题目描述 Description
Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光。
Z小镇附近共有
N(1<N≤500)个景点(编号为1,2,3,…,N),这些景点被M(0<M≤5000)条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路。也许是为了保护该地的旅游资源,Z小镇有个奇怪的规定,就是对于一条给定的公路Ri,任何在该公路上行驶的车辆速度必须为Vi。频繁的改变速度使得游客们很不舒服,因此大家从一个景点前往另一个景点的时候,都希望选择行使过程中最大速度和最小速度的比尽可能小的路线,也就是所谓最舒适的路线。
输入描述 Input Description
第一行包含两个正整数,N和M。
接下来的M行每行包含三个正整数:x,y和v(1≤x,y≤N,0 最后一行包含两个正整数s,t,表示想知道从景点s到景点t最大最小速度比最小的路径。s和t不可能相同。
输出描述 Output Description
如果景点s到景点t没有路径,输出“IMPOSSIBLE”。否则输出一个数,表示最小的速度比。如果需要,输出一个既约分数。
样例输入 Sample Input
样例1
4 2
1 2 1
3 4 2
1 4
样例2
3 3
1 2 10
1 2 5
2 3 8
1 3
样例3
3 2
1 2 2
2 3 4
1 3
样例输出 Sample Output
样例1
IMPOSSIBLE
样例2
5/4
样例3
2
数据范围及提示 Data Size & Hint
N(1<N≤500)
M(0<M≤5000)
Vi在int范围内
题解思路:并查集 + 枚举遍历
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 5000+5;
struct node {
int x;
int y;
double v;
} branch[N];
int sign[600];
int a,b,c;
int n,m;
int s,t;
int find(int x) {
if(x==sign[x]) {
return x;
} else {
sign[x] = find(sign[x]);
return sign[x];
}
}
void init(int n) {
for(int i = 1; i<=n ; i++) {
sign[i] = i;
}
}
void merge(int x,int y) {
if(find(x)!=find(y)) {
sign[find(x)] = find(y);
}
// sign[find(x)]=find(sign[y]);
}
/*按照降序排列*/
bool compare(const node &x, const node &y) {
return x.v > y.v;
}
int gcd(int x,int y) {
if(y==0) {
return x;
} else {
gcd(y,x%y);
}
}
int main() {
cin>>n>>m;
init(n);
for(int i =1; i<=m; i++) {
cin>>a>>b>>c;
branch[i].x = a;
branch[i].y = b;
branch[i].v = c;
}
sort(branch+1,branch+m+1,compare);
cin>>s>>t;
for(int i = 1 ; i<=m; i++) {
merge(branch[i].x,branch[i].y);
}
if(find(s)!=find(t)) {
cout<<"IMPOSSIBLE"<<endl;
return 0;
}
double pmin = 9999999999999.0, min=1;
for(int i =1 ; i<=m ; i++) {
init(n);
int k,flag = 0;
for(k = i; k<=m; k++) {
merge(branch[k].x,branch[k].y);
int x = find(s);
int y = find(t);
if(x==y) {
flag=1;
break;
}
}
if((pmin/min)>(branch[i].v/branch[k].v)&&flag) {
pmin = branch[i].v;
min = branch[k].v;
}
}
int a1=pmin,a2=min;
if(a1%a2==0) {
cout<<a1/a2;
} else {
int g=gcd(a1,a2);
a1/=g;
a2/=g;
cout<<a1<<'/'<<a2;
}
return 0;
}
Thanks