ROS2架构介绍

  1. 支持多机器人系统: 更好地处理多机器人之间的通信和协调。
  2. 跨平台兼容: 支持 Linux、macOS 和 Windows。
  3. 实时性: 为实时控制回路提供更好的支持。
  4. 适用于嵌入式设备: 可以在资源受限的微控制器上运行。
  5. 改进的安全性: 提供节点间的安全通信机制。
  6. 更好的生命周期管理: 为节点提供标准化的状态管理。
  7. 商业友好: 使用 Apache 2.0 许可证,更易于商业化应用。
  8. 利用现有技术: 尽可能采用成熟的工业标准,如 DDS。

ROS 2 的分层架构 (概念性):

可以从下往上理解 ROS 2 的架构层次:


ROS 2 深度解析:新一代机器人操作系统框架

摘要: ROS 2 (Robot Operating System 2) 是一个用于构建复杂、健壮机器人应用程序的开源软件框架。它并非传统意义上的操作系统,而是一个包含库、工具和约定的集合,旨在应对现代机器人系统在多机器人协作、实时性、安全性、跨平台兼容性以及商业化应用等方面的挑战。本文将深入探讨 ROS 2 的核心设计理念、分层架构、关键组件、通信机制以及其相较于 ROS 1 的主要改进。

一、ROS 2 的诞生背景与核心目标

ROS 1 在机器人领域取得了巨大成功,但随着机器人技术的发展,其固有的局限性逐渐显现。例如,依赖中心化的 roscore 节点、有限的实时性支持、较弱的安全性以及对多机器人系统和嵌入式设备支持不足等。

为了解决这些问题,ROS 2 进行了彻底的重新设计,其核心设计目标包括:

  1. 支持多机器人系统: 原生支持去中心化的发现与通信,更好地处理多机器人之间的协调。
  2. 跨平台兼容: 官方支持 Linux、macOS 和 Windows 主流操作系统。
  3. 提升实时性: 为实时控制回路提供更确定性的行为和更好的支持。
  4. 适用于嵌入式设备: 优化资源消耗,使其能在资源受限的微控制器(如 micro-ROS)上运行。
  5. 改进的安全性: 提供节点间的身份验证、访问控制和加密通信机制。
  6. 更好的生命周期管理: 为节点提供标准化的状态管理,增强系统的可控性和鲁棒性。
  7. 商业友好: 采用 Apache 2.0 许可证,降低商业化应用的门槛。
  8. 利用现有技术: 尽可能采用成熟的工业标准,如 DDS (Data Distribution Service) 作为核心通信中间件。

二、ROS 2 的分层架构

ROS 2 的架构设计清晰且分层,便于理解和扩展。从下往上,其概念性架构层次如下:

+------------------------------------------------------+
|                   用户应用程序层                     |
| (用户编写的机器人逻辑、算法、特定应用节点等)         |
| (e.g., Navigation2, MoveIt2, Custom Algorithms)      |
+------------------------------------------------------+
|           ROS 客户端库层 (RCL - ROS Client Libraries)  |
| (为用户提供编程接口,如 rclcpp, rclpy, rclc)         |
+------------------------------------------------------+
|          ROS 中间件接口层 (RMW API - ROS Middleware API) |
| (定义ROS如何与底层通信系统交互的抽象接口)            |
+------------------------------------------------------+
|         DDS / 中间件实现层 (RMW Implementation)        |
| (具体的通信中间件实现,如 Fast DDS, Cyclone DDS等)    |
+------------------------------------------------------+
|                  操作系统 / 硬件层                     |
| (Linux, Windows, macOS, RTOS, 嵌入式板卡等)          |
+------------------------------------------------------+
  • 操作系统/硬件层: 提供基础的计算和通信能力。
  • DDS/中间件实现层: 这是 ROS 2 通信的核心。默认使用 DDS 实现,如 eProsima Fast DDS。这一层负责实际的数据传输、节点发现等。
  • ROS 中间件接口层 (RMW API): 这是一个抽象层,将 ROS 的通信概念(如发布/订阅、服务)与底层的具体中间件实现解耦。这使得 ROS 2 可以灵活地切换不同的 DDS 供应商,甚至支持非 DDS 中间件。
  • ROS 客户端库层 (RCL): 为应用程序开发者提供易于使用的 API。rclcpp 用于 C++,rclpy 用于 Python,rclc 用于 C (主要面向微控制器)。开发者通过 RCL 与 ROS 2 系统交互。
  • 用户应用程序层: 开发者基于 RCL 编写的节点、库和工具,实现机器人的具体功能。

三、核心组件与概念详解

1. 节点 (Nodes)
  • 定义: 节点是 ROS 2 中最基本的计算单元,通常负责机器人系统中的一个特定、独立的功能(例如:传感器驱动、电机控制、路径规划、图像处理)。
  • 特点: 每个节点都是一个独立的可执行程序(或进程内的组件)。节点之间通过 ROS 2 的通信机制进行数据交换和协调。
  • 组件 (Components): 为了提高效率并减少进程间通信的开销(特别是在资源受限的系统中),ROS 2 鼓励将节点实现为“组件”。组件是可以动态加载到单个进程中的共享库。多个组件可以在同一个进程中运行,它们之间的通信可以使用更高效的进程内通信。
2. 通信机制

ROS 2 的核心是其强大且灵活的通信系统,主要基于 DDS (Data Distribution Service) 标准。

a. DDS (数据分发服务)
  • 是什么: DDS 是一个由 OMG (Object Management Group) 制定的开放工业标准,专为实时、高性能、可扩展和可靠的以数据为中心的发布/订阅系统而设计。
  • 为什么 ROS 2 选择 DDS:
    • 去中心化发现: 节点可以自动发现网络中的其他节点和主题,无需像 ROS 1 中的 roscore 主节点,消除了单点故障。
    • 丰富的 QoS (Quality of Service) 策略: DDS 允许对数据传输的可靠性、持久性、延迟、历史记录等方面进行精细控制,以适应不同场景的需求。
    • 传输多样性: DDS 实现通常支持多种底层传输协议(如 UDPv4/v6 单播/多播, TCP, 共享内存),可根据网络条件和性能要求选择。
    • 互操作性: 不同厂商的 DDS 实现遵循 DDSI-RTPS (Real-Time Publish-Subscribe) 有线协议,理论上可以互通。
    • 工业验证: DDS 已在航空航天、国防、金融、工业自动化等要求严苛的领域得到广泛应用和验证。
  • RMW (ROS Middleware Interface): 如前所述,ROS 2 通过 RMW 抽象层与 DDS 交互,而不是直接使用 DDS API。这提供了灵活性,允许用户选择不同的 DDS 实现或未来支持其他中间件。
b. 主题 (Topics) - 发布/订阅模型
  • 机制: 这是 ROS 2 最基础的异步通信方式。一个节点可以发布 (publish) 消息到一个命名的数据通道,称为主题 (Topic)。其他对该主题数据感兴趣的节点可以订阅 (subscribe) 该主题以接收这些消息。
  • 消息 (Messages): 在主题上传输的数据具有预定义的结构,称为消息。消息类型使用 .msg 文件描述(例如,geometry_msgs/msg/Twist 用于速度指令)。
  • 特点:
    • 异步通信: 发布者发送消息后不等待响应。
    • 多对多: 一个主题可以有多个发布者和多个订阅者。
    • 解耦: 发布者和订阅者在时间、空间上都是解耦的,它们不需要知道对方的存在。
    • 适用场景: 适用于连续的数据流,如传感器读数(激光雷达、摄像头、IMU)、机器人状态(里程计、关节状态)、日志信息等。
c. 服务 (Services) - 请求/响应模型
  • 机制: 一种双向、同步(通常)的通信方式。一个节点(客户端)发送一个请求 (Request) 到另一个节点(服务器),服务器处理请求并返回一个响应 (Response)
  • 服务定义: 使用 .srv 文件描述,包含请求部分和响应部分的数据结构。
  • 特点:
    • 同步(阻塞式): 客户端通常会等待服务器的响应。
    • 一对一(逻辑上): 一个请求对应一个响应。
    • 适用场景: 适用于需要远程过程调用 (RPC) 的场景,如触发一个特定动作(拍照、启动电机)、查询一个特定状态(获取配置参数)、执行一个计算任务并返回结果等。
d. 动作 (Actions) - 长时间任务与反馈
  • 机制: 用于执行需要较长时间才能完成的任务,并在此过程中提供持续的反馈,同时允许任务被取消。
  • 组成:
    • 目标 (Goal): 客户端发送给动作服务器的目标指令。
    • 反馈 (Feedback): 动作服务器在执行目标过程中周期性地发送给客户端的进度信息。
    • 结果 (Result): 任务完成后(成功、失败或被取消),动作服务器发送给客户端的最终结果。
  • 动作定义: 使用 .action 文件描述目标、反馈和结果的数据结构。
  • 特点:
    • 异步执行: 客户端发送目标后不必阻塞等待。
    • 可抢占/可取消: 客户端可以请求取消正在执行的动作。
    • 持续反馈: 客户端可以实时了解任务进展。
    • 适用场景: 适用于复杂的、耗时较长的任务,如机器人导航到目标点、机械臂执行抓取序列、长时间的数据处理等。
3. 参数 (Parameters)
  • 定义: 节点在运行时可以配置的值。每个节点都可以维护一组参数,这些参数可以在启动时从文件加载,也可以在运行时通过 ROS 2 的参数 API 动态查询和修改。
  • 特点: 用于调整节点的行为,如 PID 控制器的增益、传感器的采样率、路径规划的容忍度等。
  • 类型: 支持多种数据类型,如布尔型、整型、浮点型、字符串以及这些类型的数组。
4. 生命周期管理 (Lifecycle Management / Managed Nodes)
  • 目的: 为 ROS 2 节点提供一个标准化的状态机,使其启动、关闭、配置和错误处理等行为更加可预测和可控。这对于构建健壮的、可管理的复杂机器人系统至关重要。
  • 状态: 主要包括 Unconfigured (未配置), Inactive (非活动), Active (活动), Finalizing (正在终止), ErrorProcessing (错误处理中) 等。
  • 转换: 节点通过预定义的转换(如 configure, activate, deactivate, cleanup, shutdown)在这些状态之间切换。这些转换可以由外部系统(如启动系统或其他节点)触发。
  • 优点: 允许系统以协调的方式管理节点,例如,确保所有传感器在控制节点激活前都已配置并激活。
5. 服务质量 (Quality of Service - QoS)
  • 定义: 源自 DDS 的一个强大功能,QoS 是一系列策略,用于精确控制通信的可靠性、持久性、时效性等方面。发布者和订阅者(以及服务客户端/服务器)可以为其通信端点指定 QoS 配置文件。
  • 常用 QoS 策略:
    • Reliability (可靠性):
      • BEST_EFFORT:尽力而为,可能丢包(类似 UDP),低延迟,适用于高频但不关键的数据。
      • RELIABLE:保证送达,会进行重传(类似 TCP),适用于不能丢失的关键数据。
    • Durability (持久性):
      • VOLATILE:仅将数据发送给当前在线的订阅者。
      • TRANSIENT_LOCAL:发布者会为后加入的订阅者保留最近发布的N条消息。
      • PERSISTENT:(理论上,较少 DDS 实现完全支持)数据会持久化存储,即使发布者重启也能恢复。
    • History (历史记录):
      • KEEP_LAST:在发送队列或接收队列中保留最新的 N 条消息。
      • KEEP_ALL:保留所有消息(需注意内存消耗)。
    • Depth (深度):KEEP_LAST 结合使用,指定 N 的值。
    • Deadline: 期望数据更新的最大时间间隔,超时未收到新数据会触发回调。
    • Lifespan: 消息的有效时间。
    • Liveliness: 节点宣告自身存活的机制。
  • 应用: QoS 策略的兼容性决定了通信双方是否能成功连接。例如,一个请求 RELIABLE 的订阅者无法与一个只提供 BEST_EFFORT 的发布者建立可靠连接(除非 DDS 实现有特定转换)。开发者需要根据数据的重要性和特性选择合适的 QoS 策略。
6. 安全性 (SROS2 - Secure ROS 2)
  • 目的: 为 ROS 2 系统提供节点间的安全通信,防止未授权访问、数据篡改和窃听。
  • 机制: SROS2 基于 DDS Security 标准,利用公钥基础设施 (PKI) 和访问控制列表 (ACL) 实现:
    • 身份验证 (Authentication): 确认通信参与者的身份。
    • 访问控制 (Access Control): 精确定义哪些节点可以发布/订阅哪些主题,可以调用/提供哪些服务或动作。
    • 加密 (Encryption): 对传输中的数据进行加密,保护数据机密性。
  • 组件: 主要通过配置文件(如权限文件 permissions.xml)、密钥库 (keystore) 和身份证书来配置和管理安全策略。

四、工具与生态系统

ROS 2 拥有一个不断发展的工具集和生态系统:

  • 构建系统 (Build System):
    • ament:ROS 2 的元构建系统,支持多种底层构建工具。
    • colcon (collective construction):ROS 2 的推荐构建工具,用于编译和测试工作区中的多个包。它支持 ament_cmake (C++), ament_python (Python) 等。
  • 命令行接口 (CLI): ros2 命令是与 ROS 2 系统交互的主要入口。
    • ros2 run <pkg_name> <executable_name>:运行节点。
    • ros2 topic list/echo/pub/info/hz: 主题相关的操作。
    • ros2 service list/call/type/info: 服务相关的操作。
    • ros2 action list/send_goal/info: 动作相关的操作。
    • ros2 param list/get/set/describe/dump: 参数相关的操作。
    • ros2 node list/info: 节点相关的操作。
    • ros2 launch <pkg_name> <launch_file_name>: 启动多个节点和配置。
  • 启动系统 (Launch System):
    • ROS 2 的启动系统更加强大和灵活,主要使用 Python 脚本 (.launch.py) 来描述如何启动和配置一组节点。也支持 XML (.launch.xml) 和 YAML (.launch.yaml) 格式。
    • Python launch 文件提供了编程能力,可以实现更复杂的启动逻辑。

开发者应根据项目需求、团队经验、预算、以及对实时性、安全性、可扩展性等方面的具体要求,综合评估后做出最合适的选择。随着 ROS 2 生态的不断成熟,其适用范围和竞争力正持续增强。

  • 可视化 (RViz2): ROS 2 版本的 3D 可视化工具,用于显示传感器数据(如点云、图像)、机器人模型、TF 变换、导航路径、标记等。
  • 仿真 (Gazebo): Gazebo 是一个强大的 3D 机器人仿真器,与 ROS 2 紧密集成(通过 ros_gz 包),用于在虚拟环境中测试机器人算法和行为。
  • 包 (Packages): ROS 2 代码和资源组织的基本单元,类似于 ROS 1。一个包可以包含源代码、launch 文件、消息/服务/动作定义、配置文件、模型文件等。

    五、ROS 1 与 ROS 2 的主要架构区别

    特性

    ROS 1

    ROS 2

    主节点

    需要 roscore (单点故障)

    无主节点 (DDS 实现分布式发现)

    通信中间件

    自定义 TCPROS/UDPROS

    基于 DDS 标准 (通过 RMW 抽象层)

    实时性

    有限支持,非设计核心

    设计上更好地支持实时控制,利用 DDS QoS

    安全性

    较弱,主要依赖网络层安全

    内建安全机制 (SROS2, 基于 DDS Security)

    QoS

    基本 (TCP可靠, UDP不可靠),不可配置

    丰富且可配置的 QoS 策略,继承自 DDS

    生命周期管理

    无标准化节点生命周期管理

    标准化的节点生命周期管理 (Managed Nodes)

    平台支持

    主要 Linux, 社区支持 macOS, Windows有限

    官方支持 Linux, macOS, Windows, 积极支持嵌入式系统

    构建系统

    Catkin

    Ament + Colcon

    Python 版本

    Python 2 (部分支持 Python 3)

    Python 3

    C++ 标准

    C++03 (后有C++11/14支持通过 catkin_tools)

    C++14/17 及更高版本 (取决于发行版和编译器)

    组件化

    nodelet (功能有限,使用较复杂)

    核心概念:组件 (Components),更易用,支持进程内高效通信

    发现机制

    Master-Slave (依赖 roscore)

    Peer-to-Peer (DDS 动态发现)

    许可证

    BSD 为主

    Apache 2.0 为主,更商业友好

    六、总结

    ROS 2 并非简单地对 ROS 1 进行升级,而是一次彻底的重新设计。它通过引入 DDS 作为通信核心,并结合现代软件工程实践,成功解决了 ROS 1 在多机器人系统、实时性、安全性和跨平台支持等方面的诸多痛点。其分层架构、标准化的生命周期管理、丰富的 QoS 策略以及内建的安全机制,使得 ROS 2 能够更好地满足现代复杂机器人应用在可靠性、性能和安全性方面的严苛需求。

    虽然学习曲线可能比 ROS 1 稍陡峭,但 ROS 2 为机器人开发者提供了一个更强大、更灵活、更面向未来的平台,特别是在工业自动化、自动驾驶、多机器人协作以及商业化产品开发等领域展现出巨大潜力。理解其核心架构和设计理念,对于有效地利用 ROS 2 构建下一代机器人系统至关重要。


    七、ROS 2 与其他市场架构对比分析

    选择一个合适的软件框架对于机器人项目的成功至关重要。ROS 2 并非孤立存在,市场上还有其他替代方案或相关技术。下面我们将 ROS 2 与几种常见的架构进行对比,以揭示其优缺点。

    1. ROS 2 vs. ROS 1

    这是最直接的对比,因为 ROS 2 是 ROS 1 的继承者和进化版。

  • ROS 2 的优势:
    • 去中心化与多机器人支持: ROS 2 基于 DDS,无需 roscore 主节点,天然支持多机器人系统的发现和通信,消除了单点故障。
    • 实时性: 通过 DDS 的 QoS 策略和 RMW 层的设计,ROS 2 能更好地支持实时控制回路的需求。
    • 安全性: 内建的 SROS2 安全机制(基于 DDS Security)提供了身份验证、访问控制和加密,远强于 ROS 1。
    • 服务质量 (QoS): 丰富且可配置的 QoS 策略,允许开发者精细控制数据传输的可靠性、持久性等。
    • 生命周期管理: 标准化的节点生命周期管理,使系统更健壮、可控。
    • 跨平台: 官方支持 Linux, macOS, Windows,并积极支持嵌入式系统 (micro-ROS)。
    • 现代语言标准: 支持现代 C++ (C++14/17+) 和 Python 3。
    • 组件化: 鼓励使用组件,支持高效的进程内通信。
    • 商业友好: Apache 2.0 许可证更易于商业化。
  • ROS 2 的潜在劣势 / ROS 1 的相对优势:
    • 生态系统成熟度: ROS 1 拥有一个极其庞大且经过长期验证的软件包生态系统。虽然 ROS 2 的生态在快速追赶,但在某些特定领域或针对特定硬件的驱动方面,ROS 1 可能仍有更多现成选择。
    • 学习曲线: DDS 的概念(如 QoS、域 ID、RTPS)和 RMW 的抽象层给 ROS 2 带来了一定的学习门槛,尤其对于初学者而言,ROS 1 的概念(如 roscore)可能显得更直接简单。
    • 资源消耗: 某些 DDS 实现可能比 ROS 1 的 TCPROS/UDPROS 在非常轻量级的场景下有稍高的基础资源消耗,尽管 micro-ROS 正在解决这个问题。
    • 迁移成本: 对于已有的 ROS 1 大型项目,迁移到 ROS 2 需要时间和精力。
  • 2. ROS 2 vs. 专有/自研框架 (Proprietary/In-house Frameworks)

    许多公司,特别是大型企业或有特定需求的研究机构,可能会选择自研机器人软件框架。

  • ROS 2 的优势:
    • 开源与社区: 庞大的全球社区支持,丰富的文档、教程和第三方包,降低了开发门槛和成本,避免了供应商锁定。
    • 标准化与互操作性: 提供了一套通用的接口和工具,便于不同团队、不同模块之间的集成,也方便集成第三方硬件和软件。基于 DDS 使得与其他 DDS 系统互操作成为可能。
    • 丰富工具链: 拥有 RViz2, Gazebo, ros2 CLI, colcon 等成熟的开发、调试、仿真和可视化工具。
    • 人才储备: 熟悉 ROS 的工程师更容易招聘。
    • 快速原型验证: 大量现成功能包可加速原型开发和新功能验证。
  • ROS 2 的潜在劣势 / 自研框架的相对优势:
    • 极致性能与定制化: 自研框架可以针对特定硬件和应用场景进行深度优化,可能在某些极端情况下达到 ROS 2 通用框架难以企及的性能或资源占用率。
    • 完全控制: 公司对自研框架拥有完全的控制权,可以根据自身需求快速迭代,不受社区发展方向或开源协议的限制。
    • 知识产权: 核心技术和实现细节可以作为商业机密得到保护。
    • 针对性简化: 如果应用场景非常简单固定,自研框架可以只实现必要功能,避免 ROS 2 完整框架带来的复杂性。
    • 历史包袱: 大型企业可能已经拥有成熟的内部框架,切换成本高。
  • 3. ROS 2 vs. 通用中间件 (如 MQTT, ZeroMQ, gRPC, RabbitMQ)

    有些项目可能会考虑使用通用的消息队列或 RPC 框架来构建机器人系统的通信部分。

  • ROS 2 的优势:
    • 机器人领域特化: ROS 2 不仅仅是通信中间件,它是一个完整的机器人应用框架。它提供了 TF (坐标变换)、参数管理、动作库、生命周期管理、标准化的消息类型(如 sensor_msgs, geometry_msgs)等机器人领域的特定抽象和工具。
    • 集成生态系统: ROS 2 的工具(如 RViz2, Gazebo)、包管理、构建系统是围绕机器人开发设计的。
    • DDS 的强大特性: 相比很多通用中间件,DDS 提供的动态发现、丰富的 QoS、以数据为中心的理念更适合复杂的分布式实时系统。
    • 面向复杂系统: ROS 2 (DDS) 的设计更适合节点数量多、数据类型复杂、对实时性和可靠性要求高的场景。
  • ROS 2 的潜在劣势 / 通用中间件的相对优势:
    • 轻量级与简洁性: 对于非常简单的应用(例如,仅需在几个组件间传递少量简单消息),MQTT 或 ZeroMQ 可能更轻量级,学习和部署更快。
    • 特定场景优化:
      • MQTT 非常适合低带宽、高延迟、不可靠的网络环境(常用于物联网)。
      • gRPC 在跨语言 RPC 调用方面非常高效,定义接口清晰。
      • RabbitMQ 等消息队列在需要复杂路由、持久化、消息确认和事务处理的场景下有优势。
    • 更广泛的 IT 应用: 这些通用中间件在传统 IT 和 Web 领域的应用更为广泛,相关人才和资源可能更多。
    • 较低的入门门槛: 单独学习一个通用中间件通常比学习整个 ROS 2 框架要简单。
  • 4. ROS 2 vs. 直接使用 DDS

    既然 ROS 2 的核心通信依赖 DDS,为什么不直接使用 DDS 呢?

  • ROS 2 的优势:
    • 更高层抽象: rclcpp/rclpy 等客户端库提供了比原生 DDS API 更易用、更符合机器人开发习惯的接口。
    • 机器人领域标准和工具: ROS 2 定义了标准的机器人消息类型、TF 坐标变换系统、参数服务、动作库、生命周期管理等,这些是纯 DDS 不提供的。RViz2、ros2 CLI 等工具也是 ROS 2 生态的一部分。
    • 生态系统集成: 大量的 ROS 2 包可以直接使用,无需从头开始为纯 DDS 系统开发所有功能。
    • 简化开发: ROS 2 封装了许多 DDS 的复杂配置,提供了合理的默认值,降低了使用 DDS 的门槛。
    • RMW 灵活性: 虽然基于 DDS,但 RMW 层的存在理论上允许 ROS 2 未来支持其他类型的中间件。
  • ROS 2 的潜在劣势 / 直接使用 DDS 的相对优势:
    • 极致控制与性能: 直接使用 DDS API 可以获得对 DDS 所有特性(如自定义传输、特定 QoS 配置的细微调整)的完全控制,可能在某些极端情况下榨取最后一丝性能或实现 ROS 2 RMW 层未暴露的 DDS 功能。
    • 无 ROS 依赖: 如果应用场景仅需要 DDS 的数据分发能力,而不需要 ROS 2 的其他任何特性(如 TF、参数、动作、ROS 工具等),那么直接使用 DDS 可以避免引入 ROS 2 的依赖和复杂性。
    • 更小代码体积: 对于深度嵌入式且资源极其受限的系统,如果仅需 DDS 的核心通信,直接集成 DDS 库可能比集成 micro-ROS(它本身也包含 RCL/RMW 层)更轻量。
  • 5. ROS 2 vs. PLC 及工业自动化专用平台

    在传统的工业自动化领域,PLC (可编程逻辑控制器) 及其配套的 HMI/SCADA 系统占据主导地位。

  • ROS 2 的优势:
    • 灵活性与复杂算法支持: ROS 2 更适合需要高级感知(如机器视觉、SLAM)、复杂运动规划、机器学习等算法的非结构化环境应用。
    • 开源与成本: 通常比专有的 PLC 系统和开发工具成本更低。
    • 快速迭代与研究: 非常适合学术研究和快速原型开发。
    • 强大的仿真能力: Gazebo 等仿真工具提供了比传统 PLC 仿真更丰富的物理和传感器仿真。
  • ROS 2 的潜在劣势 / PLC 的相对优势:
    • 确定性与可靠性: PLC 系统专为高可靠性、高确定性的工业控制设计,在恶劣工业环境下的稳定性和实时响应能力久经考验。
    • 行业标准与认证: 在许多工业领域,PLC 及其编程语言(如梯形图)是事实标准,并有相应的安全认证。
    • 易于维护(对特定人群): 对于熟悉电气和传统自动化控制的工程师,PLC 的编程和维护可能更直观。
    • 生态成熟(在工业控制领域): 拥有大量成熟的工业传感器、执行器接口和控制模块。
  • 总结:

    没有哪个框架是万能的。ROS 2 的核心优势在于其开源性、强大的社区支持、针对机器人领域的丰富功能集、基于 DDS 的现代化通信架构(带来良好的实时性、安全性和多机器人支持潜力)以及跨平台能力

  • 对于复杂的、需要感知与智能决策、多机器人协作、或者希望利用开源生态快速迭代的机器人项目,ROS 2 是一个极具吸引力的选择。
  • 对于已有大量 ROS 1 积累且短期内需求稳定的项目,可逐步评估迁移或采用 ROS 1/ROS 2 桥接。
  • 对于需求非常简单、对资源占用极其敏感或仅需特定通信模式的组件,轻量级通用中间件可能是补充。
  • 对于追求极致性能且有足够研发实力的特定应用,自研框架仍有其价值。
  • 对于传统工业产线固定逻辑控制,PLC 依然是主力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张槊哲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值