1.为了减少训练时占用太多内存,可以在 import 语句下面加上如下语句:
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.1)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
其中0.1 是占用比例,可以调整。
2. 可以把程序压缩包upload到 http://172.24.97.26:7778(7778这是我的端口号),new一个terminal ,进入命令行,
执行unzip filename 解压缩 , 执行某个.py程序,可以new Python2,把代码复制进来,就可以run了,也可以 在terminal里进入程序所在的目录,执行 python filename执行程序。
3. .py 程序执行完会产生一个log_graph的文件,在命令行输入 tensorboard -- logdir=./ log_graph --port=6006& 执行,如果没有出错,那么就可以查看训练变化曲线了 6006是端口,如果有被占用,就再换一个。
4.新开一个网页,输入 http://172.24.97.26:6006 进入tensorboard查看曲线。
5 修改程序的 loss 参数 查看曲线变化。
6.nvidia-smi 查看内存 ,kill 杀之
7 screen -s juy(名字可以任意)
screen -r 上面完整的 数字编号 (断电续网)
top查看cpu
rm -r filename 删除文件
pip uninstall filename+版本号 卸载程序
pip install filename +版本号 安装程序
unzip filename 解压缩