Paddle深度学习库快速安装-又一强大国产深度学习环境

59 篇文章 4 订阅
46 篇文章 3 订阅


官网地址:
https://www.paddlepaddle.org.cn/
在这里插入图片描述

pip 安装

python -m pip install paddlepaddle-gpu==2.2.2 -i https://mirror.baidu.com/pypi/simple

在这里插入图片描述

conda 安装

conda install paddlepaddle-gpu==2.2.2 cudatoolkit=10.2 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/

在这里插入图片描述

Github代码安装

git clone https://github.com/PaddlePaddle/PaddleX.git
cd PaddleX
git checkout develop
python setup.py install

paddle实现手写识别

整个工作的pipeline
在这里插入图片描述

import部分

import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import os
import gzip
import json
import random
import numpy as np

读入数据并划分数据集

#数据处理部分之前的代码,保持不变
import os
import random
import paddle
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

import gzip
import json

# 定义数据集读取器
def load_data(mode='train'):

    # 加载数据
    datafile = './work/mnist.json.gz'
    print('loading mnist dataset from {} ......'.format(datafile))
    data = json.load(gzip.open(datafile))
    print('mnist dataset load done')

    # 读取到的数据区分训练集,验证集,测试集
    train_set, val_set, eval_set = data

    # 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS
    IMG_ROWS = 28
    IMG_COLS = 28

    if mode == 'train':
        # 获得训练数据集
        imgs, labels = train_set[0], train_set[1]
    elif mode == 'valid':
        # 获得验证数据集
        imgs, labels = val_set[0], val_set[1]
    elif mode == 'eval':
        # 获得测试数据集
        imgs, labels = eval_set[0], eval_set[1]
    else:
        raise Exception("mode can only be one of ['train', 'valid', 'eval']")

    #校验数据
    imgs_length = len(imgs)
    assert len(imgs) == len(labels), \
          "length of train_imgs({}) should be the same as train_labels({})".format(
                  len(imgs), len(labels))

    # 定义数据集每个数据的序号, 根据序号读取数据
    index_list = list(range(imgs_length))
    # 读入数据时用到的batchsize
    BATCHSIZE = 100
    
    # 定义数据生成器
    def data_generator():
        if mode == 'train':
            random.shuffle(index_list)
        imgs_list = []
        labels_list = []
        for i in index_list:
            img = np.array(imgs[i]).astype('float32')
            label = np.array(labels[i]).astype('float32')
            # 在使用卷积神经网络结构时,uncomment 下面两行代码
            img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
            label = np.reshape(labels[i], [1]).astype('float32')
            
            imgs_list.append(img) 
            labels_list.append(label)
            if len(imgs_list) == BATCHSIZE:
                yield np.array(imgs_list), np.array(labels_list)
                imgs_list = []
                labels_list = []

        # 如果剩余数据的数目小于BATCHSIZE,
        # 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch
        if len(imgs_list) > 0:
            yield np.array(imgs_list), np.array(labels_list)

    return data_generator

定义网络结构

# 定义 SimpleNet 网络结构
import paddle
from paddle.nn import Conv2D, MaxPool2D, Linear
import paddle.nn.functional as F
# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):
     def __init__(self):
         super(MNIST, self).__init__()
         
         # 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
         self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)
         # 定义池化层,池化核的大小kernel_size为2,池化步长为2
         self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)
         # 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
         self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)
         # 定义池化层,池化核的大小kernel_size为2,池化步长为2
         self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)
         # 定义一层全连接层,输出维度是1
         self.fc = Linear(in_features=980, out_features=1)
         
    # 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出
    # 卷积层激活函数使用Relu,全连接层不使用激活函数
     def forward(self, inputs):
         x = self.conv1(inputs)
         x = F.relu(x)
         x = self.max_pool1(x)
         x = self.conv2(x)
         x = F.relu(x)
         x = self.max_pool2(x)
         x = paddle.reshape(x, [x.shape[0], -1])
         x = self.fc(x)
         return x

损失函数

#仅修改计算损失的函数,从均方误差(常用于回归问题)到交叉熵误差(常用于分类问题)
def train(model):
    model.train()
    #调用加载数据的函数
    # train_loader = load_data('train')
    # val_loader = load_data('valid')
    opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
    EPOCH_NUM = 10
    for epoch_id in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            #准备数据
            images, labels = data
            images = paddle.to_tensor(images)
            labels = paddle.to_tensor(labels)
            #前向计算的过程
            predicts = model(images)
            
            #计算损失,使用交叉熵损失函数,取一个批次样本损失的平均值
            loss = F.cross_entropy(predicts, labels)
            avg_loss = paddle.mean(loss)
            
            #每训练了200批次的数据,打印下当前Loss的情况
            if batch_id % 200 == 0:
                print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))
            
            #后向传播,更新参数的过程
            avg_loss.backward()
            # 最小化loss,更新参数
            opt.step()
            # 清除梯度
            opt.clear_grad()
        # acc_train_mean = evaluation(model, train_loader)
        # acc_val_mean = evaluation(model, val_loader)
        # print('train_acc: {}, val acc: {}'.format(acc_train_mean, acc_val_mean))   
    #保存模型参数
    paddle.save(model.state_dict(), 'mnist.pdparams')
    
#创建模型    
model = MNIST()
#启动训练过程
train(model)

模型训练

#仅优化算法的设置有所差别
def train(model):
    model.train()
    #调用加载数据的函数
    train_loader = load_data('train')
    
    #四种优化算法的设置方案,可以逐一尝试效果
    opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
    # opt = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9, parameters=model.parameters())
    # opt = paddle.optimizer.Adagrad(learning_rate=0.01, parameters=model.parameters())
    # opt = paddle.optimizer.Adam(learning_rate=0.01, parameters=model.parameters())
    
    EPOCH_NUM = 3
    for epoch_id in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            #准备数据
            images, labels = data
            images = paddle.to_tensor(images)
            labels = paddle.to_tensor(labels)
            
            #前向计算的过程
            predicts = model(images)
            
            #计算损失,取一个批次样本损失的平均值
            loss = F.cross_entropy(predicts, labels)
            avg_loss = paddle.mean(loss)
            
            #每训练了100批次的数据,打印下当前Loss的情况
            if batch_id % 200 == 0:
                print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))
            
            #后向传播,更新参数的过程
            avg_loss.backward()
            # 最小化loss,更新参数
            opt.step()
            # 清除梯度
            opt.clear_grad()

    #保存模型参数
    paddle.save(model.state_dict(), 'mnist.pdparams')
    
#创建模型    
model = MNIST()
#启动训练过程
train(model)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值