python 手动读取cifar10_pytorch构建CNN对cifar10识别

本教程介绍了如何使用PyTorch手动读取和处理CIFAR10数据集,构建一个CNN分类器,训练并测试模型。通过训练,网络在测试集上达到了9%的准确率,但在某些类别上表现出色,如飞机达到99%的准确性。
摘要由CSDN通过智能技术生成
  • 训练一个分类器
  • 上一讲中已经看到如何去定义一个神经网络(构造一个类,前向传播,后向传播),计算损失值和更新网络的权重。 你现在可能在想下一步。
  • 关于数据?

一般情况下处理图像、文本、音频和视频数据时,可以使用标准的Python包来加载数据到一个numpy数组中。 然后把这个数组转换成torch.*Tensor

  • 图像可以使用 Pillow, OpenCV
  • 音频可以使用 scipy, librosa
  • 文本可以使用原始Python和Cython来加载,或者使用 NLTK或 SpaCy 处理

对于图像任务,我们创建了一个包torchvision,它包含了处理一些基本图像数据集的方法。这些数据集包括 Imagenet, CIFAR10, MNIST 等。除了数据加载以外,torchvision还包含了图像转换器,torchvision.datasetstorch.utils.data.DataLoader

torchvision包不仅提供了巨大的便利,也避免了代码的重复。

在这个教程中,我们使用CIFAR10数据集,它有如下10个类别 :‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。CIFAR-10的图像都是 3x32x32大小的,即,3颜色通道,32x32像素

f0f99839f7995f90855b64c488478e39.png

训练一个图像分类器

依次按照下列顺序进行:

  1. 使用torchvision加载和归一化CIFAR10训练集和测试集
  2. 定义一个卷积神经网络
  3. 定义损失函数
  4. 训练集训练网络
  5. 测试集测试网络

读取数据和归一化

import torch
import torchvision
import torchvision.transforms as transforms

torchvision的输出是[0,1]的PILImage图像,我们把它转换为归一化范围为[-1, 1]的张量.

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])#对读取数据做个处理,打个包
#Normalize是数据归一化

trainset = torchvision.datasets.CIFAR10(root='/jhub/stude
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值