高等数学

第一章 函数 极限 连续

第一节 函数

一、函数的定义
x x x y y y 是两个变量, D D D 是一个给定的数集. 如果对于每个数 x ∈ D x \in D xD,变量 y y y 按照一定法则,总有唯一确定的数值 y y y 和它对应,则称 y y y x x x 的函数,记为 y = f ( x ) y=f(x) y=f(x).

二、函数的表示方法

  1. 显函数:由解析式 y = f ( x ) y=f(x) y=f(x) 所确定的函数.
    (1)用一个解析式子表示的函数.

(2)分段函数:在定义域内不能用同一个式子表示的函数.

  1. 隐函数: 由方程 F ( x , y ) = 0 F(x, y)=0 F(x,y)=0 所确定的函数.

  2. 由参数方程确定的函数:由参数方程 { x = φ ( t ) y = ψ ( t ) \left\{\begin{array}{l}x=\varphi(t) \\ y=\psi(t)\end{array}\right. {x=φ(t)y=ψ(t) 所确定的函数.

  3. 积分上限函数:由变上限积分所确定的函数.

三、函数的几种特性

  1. 有界性:

    设函数 y = f ( x ) y=f(x) y=f(x) 在数集 X X X 上有定义,若存在正数 M M M,使得对于每一个 x ∈ X x \in X xX,都有 ∣ f ( x ) ∣ ⩽ |f(x)| \leqslant f(x) M M M 成立,则称 f ( x ) f(x) f(x) X X X 上有界. 否则, 即这样的 M M M 不存在,则称 f ( x ) f(x) f(x) X X X 上无界, 即对任何 M > 0 , M>0, M>0, 总存在 x 0 ∈ X , x_{0} \in X, x0X, 使 ∣ f ( x 0 ) ∣ > M . \left|f\left(x_{0}\right)\right|>M . f(x0)>M. 比如:如: 有界函数 : y = sin ⁡ x , x ∈ ( − ∞ , + ∞ ) , y = arctan ⁡ x , x ∈ ( − ∞ , + ∞ ) : y=\sin x, x \in(-\infty,+\infty), \quad y=\arctan x, x \in(-\infty,+\infty) :y=sinx,x(,+),y=arctanx,x(,+)
    无解函数 : y = 1 x , x ∈ ( 0 , 1 ) , y = tan ⁡ x , x ∈ ( − π 2 , π 2 ) : y=\frac{1}{x}, x \in(0,1), \quad y=\tan x, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) :y=x1,x(0,1),y=tanx,x(2π,2π)

  2. 单调性

    设函数 y = f ( x ) y=f(x) y=f(x) 在区间 I I I 上有定义,若对于 I I I 上任意两点 x 1 x_{1} x1 x 2 , x_{2}, x2, x 1 < x 2 x_{1}<x_{2} x1<x2 时, 均有 f ( x 1 ) < f ( x 2 ) ( f\left(x_{1}\right)<f\left(x_{2}\right)\left(\right. f(x1)<f(x2)( f ( x 1 ) > f ( x 2 ) ) , \left.f\left(x_{1}\right)>f\left(x_{2}\right)\right), f(x1)>f(x2)), 则称函数 y = f ( x ) y=f(x) y=f(x) 在区间 I I I 上单调增加(或单调减少).
    如 : y = tan ⁡ x y=\tan x y=tanx ( − π 2 , π 2 ) \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) (2π,2π) 内单调增加,即 y y y 值随着 x x x 值的增加而增加.

  3. 奇偶性

    设函数 y = f ( x ) y=f(x) y=f(x) 的定义域为 ( − a , a ) , (-a, a), (a,a), 其中 a > 0 a>0 a>0,

    (1)若对 ∀ x ∈ ( − a , a ) \forall x \in(-a, a) x(a,a) 都有 f ( − x ) = f ( x ) , f(-x)=f(x), f(x)=f(x), 则称 f ( x ) f(x) f(x) 为偶函数(其图像关于 y y y 轴对称);
    (2)若对 ∀ x ∈ ( − a , a ) \forall x \in(-a, a) x(a,a) 都有 f ( − x ) = − f ( x ) , f(-x)=-f(x), f(x)=f(x), 则称 f ( x ) f(x) f(x) 为奇函数(其图像关于原点对称 )

  4. 周期性

    对于函数 y = f ( x ) y=f(x) y=f(x),若存在常数 T > 0 T>0 T>0,有 f ( x + T ) = f ( x ) , f(x+T)=f(x), f(x+T)=f(x), 则称函数 y = f ( x ) y=f(x) y=f(x) 为周期函数, T T T 称为 f ( x ) f(x) f(x) 的周期.

四、反函数与复合函数

  1. 反函数
    设函数 y = f ( x ) y=f(x) y=f(x) 的值域为 D y , D_{y}, Dy, 如果对于 D y D_{y} Dy 中任意一 y y y 值,从关系式 y = f ( x ) y=f(x) y=f(x) 中可确定唯 一的 x x x 值,则此时按照函数的定义,也确定了 x x x y y y 的函数,称此 函数为 y = f ( x ) y=f(x) y=f(x) 的反函数,, 记为 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y)
    习惯上:把 x = f 1 ( y ) x=f^{1}(y) x=f1(y) 记成 y = f − 1 ( x ) , y=f^{-1}(x), y=f1(x), y = f − 1 ( x ) y=f^{-1}(x) y=f1(x) y = f ( x ) y=f(x) y=f(x) 的反函数.

  2. 复合函数

设函数 y = f ( u ) y=f(u) y=f(u) 的定义域为 D f , D_{f}, Df, 函数 u = g ( x ) u=g(x) u=g(x) 的定义域为 D g , D_{g}, Dg, 且值域 g ( D g ) ⊂ D f , g\left(D_{g}\right) \subset D_{f}, g(Dg)Df, 则函数 y = f [ g ( x ) ] , x ∈ D s y=f[g(x)], x \in D_{s} y=f[g(x)],xDs 称为由函数 y = f ( u ) y=f(u) y=f(u) 和 函数 u = g ( x ) u=g(x) u=g(x) 构成的复合函数,定义域为 D g D_{g} Dg , 变量 u u u 称为中间变量.

五、初等函数

  1. 基本初等函数
    (1) 幕函数 y = x u y=x^{u} y=xu,定义域与 u u u 有关.
    (2) 指数函数 y = a x ( a > 0 , a ≠ 1 ) , x ∈ ( − ∞ , + ∞ ) y=a^{x}(a>0, a \neq 1), x \in(-\infty,+\infty) y=ax(a>0,a=1),x(,+)
    (3) 对数函数: y = log ⁡ a x ( a > 0 , a ≠ 1 ) , x ∈ ( 0 , + ∞ ) y=\log _{a} x(a>0, a \neq 1), x \in(0,+\infty) y=logax(a>0,a=1),x(0,+)

(4) 二角函数 : y = sin ⁡ x , cos ⁡ x , tan ⁡ x , cot ⁡ x , sec ⁡ x , csc ⁡ x y=\sin x, \cos x, \tan x, \cot x, \sec x, \csc x y=sinx,cosx,tanx,cotx,secx,cscx
(5) 反三角函数 : y = arcsin ⁡ x , arccos ⁡ x , arctan ⁡ x , arccot ⁡ x y=\arcsin x, \arccos x, \arctan x, \operatorname{arccot} x y=arcsinx,arccosx,arctanx,arccotx

  1. 初等函数

由基本初等函数经过有限次四则运算和有限次复合,并且在定义域内具有统一的解析表 达式的函数称为初等函数.

第二节 函数的极限

一、函数极限的概念与性质

  1. 函数极限的定义
    (1) 定义 1 设函数 y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 的某个去心邻域内有定义,若对 ∀ ε > 0 , ∃ δ > 0 , \forall \varepsilon>0, \exists \delta>0, ε>0,δ>0, 0 < 0< 0< ∣ x − x 0 ∣ < δ \left|x-x_{0}\right|<\delta xx0<δ , , , 恒有 ∣ f ( x ) − a ∣ < ε , |f(x)-a|<\varepsilon, f(x)a<ε, 则称 y = f ( x ) y=f(x) y=f(x) x → x 0 x \rightarrow x_{0} xx0 的极 限为 a a a,记为 lim ⁡ x → x 0 f ( x ) = a \lim _{x \rightarrow x_{0}} f(x)=a limxx0f(x)=a
    直观解释 : lim ⁡ x → x n f ( x ) = a : : \lim _{x \rightarrow x_{n}} f(x)=a: :limxxnf(x)=a: x x x 无限趋近 x 0 x_{0} x0 时, 函数 f ( x ) f(x) f(x) 无限趋近常数 a . a . a. \quad 定义的第一句话 ( \left(\right. ( 设函数 y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 的某个去心邻域内有定义)告诉这样的结论:
    (1) lim ⁡ x → x n f ( x ) \lim _{x \rightarrow x_{n}} f(x) limxxnf(x) f ( x ) f(x) f(x) x 0 x_{0} x0 点是否有定义及 f ( x 0 ) f\left(x_{0}\right) f(x0) 的大小无关.
    (2) 极限是函数的局部性质,只与很邻近值有关.
    (2) 定义 2 设函数 y = f ( x ) y=f(x) y=f(x) ∣ x ∣ > E > 0 |x|>E>0 x>E>0 内有定义,若对 ∀ ε > 0 , ∃ M > 0 , \forall \varepsilon>0, \exists M>0, ε>0,M>0, 使得当 ∣ x ∣ > |x|> x> M M M 时,恒有 ∣ f ( x ) − a ∣ < ε , |f(x)-a|<\varepsilon, f(x)a<ε, 则称 y = f ( x ) y=f(x) y=f(x) x → ∞ x \rightarrow \infty x 的极限为 a a a,记为 lim ⁡ x → ∞ f ( x ) = a . \lim _{x \rightarrow \infty} f(x)=a . limxf(x)=a.
    直观解释 : lim ⁡ x → ∞ f ( x ) = a : : \lim _{x \rightarrow \infty} f(x)=a: :limxf(x)=a: ∣ x ∣ |x| x 尤限增大时, 函数 f ( x ) f(x) f(x) 无限趋近常数 a a a.
  2. 左、右极限的定义
    (1) 左极限 : f ( x 0 − 0 ) = lim ⁡ x → x 0 − 0 f ( x ) = a : f\left(x_{0}-0\right)=\lim _{x \rightarrow x_{0}-0} f(x)=a :f(x00)=limxx00f(x)=a ⇔ ∀ ε > 0 , ∃ δ > 0 , \Leftrightarrow \forall \varepsilon>0, \exists \delta>0, ε>0,δ>0, − δ < x − x 0 < 0 -\delta<x-x_{0}<0 δ<xx0<0 时, 恒有 ∣ f ( x ) − a ∣ < ε . |f(x)-a|<\varepsilon . f(x)a<ε.

​ (2) 右极限: f ( x 0 + 0 ) = lim ⁡ x → x 0 + 0 f ( x ) = a f\left(x_{0}+0\right)=\lim _{x \rightarrow x_{0}+0} f(x)=a f(x0+0)=limxx0+0f(x)=a ⟺ ∀ ε > 0 , ∃ δ > 0 , \Longleftrightarrow \forall \varepsilon>0, \exists \delta>0, ε>0,δ>0, 0 < x − x 0 < δ 0<x-x_{0}<\delta 0<xx0<δ 时,恒有 ∣ f ( x ) − a ∣ < ε . |f(x)-a|<\varepsilon . f(x)a<ε.
​ 如 : f ( x ) = { sin ⁡ 3 x , x < 0 x 2 + 1 , x ⩾ 0 : f(x)=\left\{\begin{array}{ll}\sin 3 x, & x<0 \\ x^{2}+1, & x \geqslant 0\end{array}\right. :f(x)={sin3x,x2+1,x<0x0
lim ⁡ x → 0 − 0 f ( x ) = lim ⁡ x → 0 − 0 ( sin ⁡ 3 x ) = 0 , lim ⁡ x → 0 + 0 f ( x ) = lim ⁡ x → 0 + 0 ( x 2 + 1 ) = 1 \lim _{x \rightarrow 0-0} f(x)=\lim _{x \rightarrow 0-0}(\sin 3 x)=0, \quad \lim _{x \rightarrow 0+0} f(x)=\lim _{x \rightarrow 0+0}\left(x^{2}+1\right)=1 x00limf(x)=x00lim(sin3x)=0,x0+0limf(x)=x0+0lim(x2+1)=1
3. 极限存在的充要条件
(1) lim ⁡ x → x 0 f ( x ) = a ⟺ lim ⁡ x → x 0 + 0 f ( x ) = lim ⁡ x → x 0 − 0 f ( x ) = a \lim _{x \rightarrow x_{0}} f(x)=a \Longleftrightarrow \lim _{x \rightarrow x_{0}+0} f(x)=\lim _{x \rightarrow x_{0}-0} f(x)=a limxx0f(x)=alimxx0+0f(x)=limxx00f(x)=a
(2) lim ⁡ x → ∞ f ( x ) = a ⟺ lim ⁡ x → + ∞ f ( x ) = lim ⁡ x → − ∞ f ( x ) = a \lim _{x \rightarrow \infty} f(x)=a \Longleftrightarrow \lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=a limxf(x)=alimx+f(x)=limxf(x)=a
\quad 分段函数在分段,点处的初限,用此法.

  1. 函数极限的性质
    (1) 唯一性: 若 lim ⁡ x → x 0 f ( x ) ( \lim _{x \rightarrow x_{0}} f(x)\left(\right. limxx0f(x)( lim ⁡ x → ∞ f ( x ) \lim _{x \rightarrow \infty} f(x) limxf(x) )存在, 则该极 限唯一.

(2) 局部有界性 : 若 lim ⁡ x → x 0 f ( x ) = a ( \lim _{x \rightarrow x_{0}} f(x)=a\left(\right. limxx0f(x)=a( lim ⁡ x → ∞ f ( x ) = a ) \left.\lim _{x \rightarrow \infty} f(x)=a\right) limxf(x)=a),则存在 x 0 x_{0} x0 的去心邻域 ( ( ( ∣ x ∣ > M > |x|>M> x>M> 0 ) , 0), 0), 使 f ( x ) f(x) f(x) 在此邻域(或 ∣ x ∣ > M > 0 ) |x|>M>0) x>M>0) 内有界.
lim ⁡ x → 0 1 x = ∞ , \lim _{x \rightarrow 0} \frac{1}{x}=\infty, limx0x1=, x = 0 x=0 x=0 处找不到去心邻域使之有界.

(3) 局部保号性 : 设 lim ⁡ x → x 0 f ( x ) = a , \lim _{x \rightarrow x_{0}} f(x)=a, limxx0f(x)=a,
(1) 若 a > 0 , a>0, a>0, 则存在 δ > 0 , \delta>0, δ>0, 0 < 1 x − x 0 ∣ < δ 0<1 x-x_{0} \mid<\delta 0<1xx0<δ , f ( x ) > 0 , f(x)>0 ,f(x)>0;
(2) 若 a < 0 , a<0, a<0, 则存在 δ > 0 , \delta>0, δ>0, 0 < ∣ x − x 0 ∣ < δ 0<\left|x-x_{0}\right|<\delta 0<xx0<δ 时, f ( x ) < 0. f(x)<0 . f(x)<0.

二、求诉数极 限的方法

  1. 用极限四则运算法则求极限
    lim ⁡ x → x 0 f ( x ) = A , lim ⁡ x → x 0 g ( x ) = B , \lim _{x \rightarrow x_{0}} f(x)=A, \lim _{x \rightarrow x_{0}} g(x)=B, limxx0f(x)=A,limxx0g(x)=B,
    (1) lim ⁡ x → x 0 ( f ( x ) ± g ( x ) ) = lim ⁡ x → x 0 f ( x ) ± lim ⁡ x → x 0 g ( x ) \lim _{x \rightarrow x_{0}}(f(x) \pm g(x))=\lim _{x \rightarrow x_{0}} f(x) \pm \lim _{x \rightarrow x_{0}} g(x) limxx0(f(x)±g(x))=limxx0f(x)±limxx0g(x)
    (2) lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ( x ) lim ⁡ x → x 0 g ( x ) \lim _{x \rightarrow x_{0}} f(x) g(x)=\lim _{x \rightarrow x_{0}} f(x) \lim _{x \rightarrow x_{0}} g(x) limxx0f(x)g(x)=limxx0f(x)limxx0g(x)
    (3) lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ( x ) lim ⁡ x → x 0 g ( x ) ( lim ⁡ x → x 0 g ( x ) ≠ 0 ) \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow x_{0}} f(x)}{\lim _{x \rightarrow x_{0}} g(x)}\left(\lim _{x \rightarrow x_{0}} g(x) \neq 0\right) limxx0g(x)f(x)=limxx0g(x)limxx0f(x)(limxx0g(x)=0)
    注 (1) lim ⁡ x → x 0 f ( x ) g ( x ) = a lim ⁡ x → x 0 g ( x ) ( lim ⁡ x → x 0 f ( x ) = a ≠ 0 ) \lim _{x \rightarrow x_{0}} f(x) g(x)=a \lim _{x \rightarrow x_{0}} g(x)\left(\lim _{x \rightarrow x_{0}} f(x)=a \neq 0\right) limxx0f(x)g(x)=alimxx0g(x)(limxx0f(x)=a=0)
    小注 1 ) 一个存在一个不存在,结论如何?
    2) 两个都不存在,结论女何?

总结 若分子、分母极限都为无穷大或无穷小(未定式),则总可以对分子、分母同除无穷大或无穷小,使分母的极限存在且不为实,再用四则运算法则求.

  1. 用复合函数蛇极限运算法则求极限
    lim ⁡ x → x 0 φ ( x ) = a , \lim _{x \rightarrow x_{0}} \varphi(x)=a, limxx0φ(x)=a, lim ⁡ x → x 0 f [ φ ( x ) ] = lim ⁡ u → a f ( u ) = A \lim _{x \rightarrow x_{0}} f[\varphi(x)]=\lim _{u \rightarrow a} f(u)=A limxx0f[φ(x)]=limuaf(u)=A

  2. 用两个重要极限求极限
    (1) lim ⁡ x → 0 sin ⁡ x x = 1 \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 limx0xsinx=1
    (2) lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\mathrm{e} limx(1+x1)x=e lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\mathrm{e} limx0(1+x)x1=e

  3. 用等价无穷小求极限
    (1) 无穷小的定义 若 lim ⁡ x → x 0 ( x ) = 0 , \lim _{x \rightarrow x_{0}}(x)=0, limxx0(x)=0, 则称 α ( x ) \alpha(x) α(x) x → x 0 x \rightarrow x_{0} xx0 时的无穷小.
    ∀ ε > 0 , ∃ δ > 0 , \quad \forall \varepsilon>0, \exists \delta>0, ε>0,δ>0, 0 < ∣ x − x 0 ∣ < δ 0<\left|x-x_{0}\right|<\delta 0<xx0<δ 时, 恒有 ∣ f ( x ) ∣ < ε |f(x)|<\varepsilon f(x)<ε 能说明为什么称它为无穷小.
    (2) 无穷小与极限存在之间的关系 lim ⁡ x → x 0 f ( x ) = A ⟺ f ( x ) = A + α ( x ) , \lim _{x \rightarrow x_{0}} f(x)=A \Longleftrightarrow f(x)=A+\alpha(x), limxx0f(x)=Af(x)=A+α(x), 其中 lim ⁡ x → x 0 ( x ) = 0 \lim _{x \rightarrow x_{0}}(x)=0 limxx0(x)=0

(3) 无穷小的运算
1) 加减:有限个无穷小的和差,仍然是无穷小.
2) 乘积:有限个无穷小的乘积,仍然是无穷小.
3) 尤穷小与有界量的乘积,仍然是无穷小.
4) 无穷小与常数的乘积,仍然是无穷小.
(4) 无穷小的比较
lim ⁡ x → x 0 α ( x ) = 0 , lim ⁡ x → x 0 β ( x ) = 0 , \lim _{x \rightarrow x_{0}} \alpha(x)=0, \lim _{x \rightarrow x_{0}} \beta(x)=0, limxx0α(x)=0,limxx0β(x)=0, lim ⁡ x → x 0 α ( x ) β ( x ) = l \lim _{x \rightarrow x_{0}} \frac{\alpha(x)}{\beta(x)}=l limxx0β(x)α(x)=l
1) 若 l ≠ 0 , l \neq 0, l=0, 则称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) 是同阶无穷小;
2) 若 l = 1 , l=1, l=1, 则称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) 是等价克穷小,记为 α ( x ) ∼ β ( x ) ; \alpha(x) \sim \beta(x) ; α(x)β(x);
3) 若 l = 0 l=0 l=0, 则称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) 的高阶无穷小,记为 α ( x ) = 0 ( β ( x ) ) \alpha(x)=0(\beta(x)) α(x)=0(β(x));
4) 若 l = ∞ , l=\infty, l=, 则称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) 的低阶无穷小;
5) 若 lim ⁡ x → x 0 α ( x ) β k ( x ) = l ≠ 0 , \lim _{x \rightarrow x_{0}} \frac{\alpha(x)}{\beta^{k}(x)}=l \neq 0, limxx0βk(x)α(x)=l=0, 则称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) k k k 阶无穷小.

常用等价无穷小:
1) 当 k ( x ) → 0 k(x) \rightarrow 0 k(x)0 , sin ⁡ k ( x ) ∼ k ( x ) ; 1 − cos ⁡ k ( x ) ∼ 1 2 [ k ( x ) ] 2 ; ln ⁡ ( 1 + k ( x ) ) ∼ k ( x ) , \sin k(x) \sim k(x) ; 1-\cos k(x) \sim \frac{1}{2}[k(x)]^{2} ; \ln (1+k(x)) \sim k(x) ,sink(x)k(x);1cosk(x)21[k(x)]2;ln(1+k(x))k(x) arcsin ⁡ k ( x ) ∼ k ( x ) ; arctan ⁡ k ( x ) ∼ k ( x ) ; e k ( x ) − 1 ∼ k ( x ) ; a k ( x ) − 1 ∼ k ( x ) ln ⁡ a \arcsin k(x) \sim k(x) ; \arctan k(x) \sim k(x) ; \mathrm{e}^{k(x)}-1 \sim k(x) ; a^{k(x)}-1 \sim k(x) \ln a arcsink(x)k(x);arctank(x)k(x);ek(x)1k(x);ak(x)1k(x)lna [ 1 + k ( x ) ] α − 1 ∼ α k ( x ) [1+k(x)]^{\alpha}-1 \sim \alpha k(x) [1+k(x)]α1αk(x)
2) ln ⁡ k ( x ) ∼ k ( x ) − 1 , \ln k(x) \sim k(x)-1, lnk(x)k(x)1, 其中 k ( x ) → 1 k(x) \rightarrow 1 k(x)1
3) α ( x ) + o ( α ( x ) ) ∼ α ( x ) , \alpha(x)+o(\alpha(x)) \sim \alpha(x), α(x)+o(α(x))α(x), 其中 lim ⁡ x → x 0 α ( x ) = 0 \lim _{x \rightarrow x_{0}} \alpha(x)=0 limxx0α(x)=0
(5) 利用等价无穷小求极限定理 \quad α ( x ) ∼ α 1 ( x ) , β ( x ) ∼ β 1 ( x ) , \alpha(x) \sim \alpha_{1}(x), \beta(x) \sim \beta_{1}(x), α(x)α1(x),β(x)β1(x), lim ⁡ x → x 0 f ( x ) α ( x ) g ( x ) β ( x ) = lim ⁡ x → x 0 f ( x ) α 1 ( x ) g ( x ) β 1 ( x ) \lim _{x \rightarrow x_{0}} \frac{f(x) \alpha(x)}{g(x) \beta(x)}=\lim _{x \rightarrow x_{0}} \frac{f(x) \alpha_{1}(x)}{g(x) \beta_{1}(x)} limxx0g(x)β(x)f(x)α(x)=limxx0g(x)β1(x)f(x)α1(x)

(6) 无穷大的定义
x → x 0 x \rightarrow x_{0} xx0 (或 x → ∞ x \rightarrow \infty x ) 时, ∣ f ( x ) ∣ |f(x)| f(x) 无限增大,则称 f ( x ) f(x) f(x) x → x 0 x \rightarrow x_{0} xx0 (或 x → ∞ x \rightarrow \infty x ) 为无究大, 记为 lim ⁡ x → x 0 f ( x ) = ∞ \lim _{x \rightarrow x_{0}} f(x)=\infty limxx0f(x)=
lim ⁡ x → x 0 f ( x ) = ∞ ⟺ \lim _{x \rightarrow x_{0}} f(x)=\infty \Longleftrightarrow limxx0f(x)= 对任意 M > 0 , M>0, M>0, 存在 δ > 0 , \delta>0, δ>0, 0 < ∣ x − x 0 ∣ < δ 0<\left|x-x_{0}\right|<\delta 0<xx0<δ , ∣ f ( x ) ∣ > M ,|f(x)|>M ,f(x)>M
注: (1) 无穷大是极限不存在的一种形式.
(2) 无穷大与无穷小之间的关系:在自变量的同一变化讨程中,若 f ( x ) f(x) f(x) 为无穷大, 则 1 f ( x ) \frac{1}{f(x)} f(x)1 心为无穷小;反之,若 f ( x ) f(x) f(x) 为无穷小, 且 f ( x ) ≠ 0 , f(x) \neq 0, f(x)=0, 1 f ( x ) \frac{1}{f(x)} f(x)1 必为无穷大.
(3) 无穷大没有大小之分,只有起于无穷大的快慢之分.
(4) 壬穷大的 四则运算.
(5) 无穷大与无界函数的关系: 无穷大是无界函数;但反之,不成立.

  1. 利用洛必达法则求极限

    (1) 法则 I ( 0 0 ) : \mathrm{I}\left(\frac{0}{0}\right): I(00):
    设函数 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 满足条件

    1. lim ⁡ x → x 0 f ( x ) = 0 , lim ⁡ x → x 0 g ( x ) = 0 \lim _{x \rightarrow x_{0}} f(x)=0, \lim _{x \rightarrow x_{0}} g(x)=0 limxx0f(x)=0,limxx0g(x)=0
    2. f ( x ) , g ( x ) f(x), g(x) f(x),g(x) x 0 x_{0} x0 的去心邻域内可导,且 g ′ ( x ) ≠ 0 g^{\prime}(x) \neq 0 g(x)=0;
    3. lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} limxx0g(x)f(x) 存在 ( ( ( ∞ ) \infty) ),
      lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} limxx0g(x)f(x)=limxx0g(x)f(x)
      (2) 法则 II ( ∞ ∞ ) \left(\frac{\infty}{\infty}\right) () :
      设函数 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 满足条件
    4. lim ⁡ x → x 0 f ( x ) = ∞ , lim ⁡ x → x 0 g ( x ) = ∞ \lim _{x \rightarrow x_{0}} f(x)=\infty, \lim _{x \rightarrow x_{0}} g(x)=\infty limxx0f(x)=,limxx0g(x)=;
    5. f ( x ) , g ( x ) f(x), g(x) f(x),g(x) x 0 x_{0} x0 的去心邻域内可导, 且 g ′ ( x ) ≠ 0 g^{\prime}(x) \neq 0 g(x)=0;
    6. lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} limxx0g(x)f(x) 存在(或 ∞ \infty ),
      lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} limxx0g(x)f(x)=limxx0g(x)f(x)

    (3) 其他末定式: 0 ⋅ ∞ , ∞ − ∞ ; 0 ∘ , ∞ ∘ , 1 ∞ 0 \cdot \infty, \infty-\infty ; 0^{\circ}, \infty^{\circ}, 1^{\infty} 0,;0,,1
    注:(1) 0 ⋅ ∞ ; ∞ − ∞ 0 \cdot \infty ; \infty-\infty 0; 将其转化为 0 0 \frac{0}{0} 00 型或 ∞ ∞ \frac{\infty}{\infty} 型,再使用洛必达法则.

    ​ (2) 0 ∘ , ∞ 0 , 1 ∞ 0^{\circ}, \infty^{0}, 1^{\infty} 0,0,1 为幂指函数类型,改写成 [ f ( x ) ] g ( x ) = e g ( x ) ln ⁡ f ( x ) . [f(x)]^{g(x)}=\mathrm{e}^{g(x) \ln f(x)} . [f(x)]g(x)=eg(x)lnf(x).

    ​ (3) lim ⁡ x → 0 x x = 1 ; lim ⁡ x → + ∞ x 1 x = 1 \lim _{x \rightarrow 0} x^{x}=1 ; \lim _{x \rightarrow+\infty} x^{\frac{1}{x}}=1 limx0xx=1;limx+xx1=1

    总结 求极限的问题,主要是求未定式的极限,而所有未定式都可以化为 0 0 \frac{0}{0} 00 型或 ∞ ∞ \frac{\infty}{\infty} 型.
    (1) 用分子(或分母)同除无穷小或无穷大,使分母极限存在且非零,再用四则运算.
    (2) 用洛必达法则(没有办法时),在用之前一定要先化简(代数变形、等价无穷小代换、计算非零极限因子)使得分子分母求导容易(即对“干净"的未定式使用洛必达法则).

  2. 已知极限,求未知参数

第三节 数列的极限

一、数列极 限的概念及性质

  1. 数列极限的定义 lim ⁡ n → ∞ x n = a ⟺ \lim _{n \rightarrow \infty} x_{n}=a \Longleftrightarrow limnxn=a 对于 ∀ ε > 0 , ∃ \forall \varepsilon>0, \exists ε>0, 一个正整数 N , N, N, n > N n>N n>N 时,恒有 ∣ x n − a ∣ < ε . \left|x_{n}-a\right|<\varepsilon . xna<ε.

    注:(1) 直观解释:即当 n n n 无限增大时, 对应的 x n x_{n} xn 无限接近于某个确定的常数 a a a.
    (2) 数列极限与前面有限项没有关系.

  2. 数列极限的性质
    (1)唯一性:若数列收玫,则它的极限唯一
    (2)有界性 : 若数列收玫,则它一定有界

    (3)保号性 : 设 lim ⁡ n → ∞ x n = a \lim _{n \rightarrow \infty} x_{n}=a limnxn=a,
    (1) 若 a > 0 a>0 a>0,则存在正整数 N > 0 N>0 N>0, 当 n > N n>N n>N 时, x n > 0 x_{n}>0 xn>0;
    (2) 若 a < 0 a<0 a<0,则存在正整数 N > 0 N>0 N>0, 当 n > N n>N n>N 时, x n < 0. x_{n}<0 . xn<0.

    (4) 收敛数列与其子列间的关系:若数列收敘于 a a a,则它的任一子数列也收敘,且极限也是 a a a.

二、求数列极限的方法

  1. 利用准则求极限
    (1) 夹道定理(数列) 若存在 N , N, N, n > N n>N n>N , y n ⩽ x n ⩽ z n , y_{n} \leqslant x_{n} \leqslant z_{n} ,ynxnzn lim ⁡ n → ∞ z n = lim ⁡ n → ∞ y n = a , \lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} y_{n}=a, limnzn=limnyn=a, lim ⁡ n → ∞ x n = a \lim _{n \rightarrow \infty} x_{n}=a limnxn=a.
    (2) 夹逼定理(函数)
    x ∈ U ˙ ( x 0 , δ ) , x \in \dot{U}\left(x_{0}, \delta\right), xU˙(x0,δ), g ( x ) ⩽ f ( x ) ⩽ h ( x ) g(x) \leqslant f(x) \leqslant h(x) g(x)f(x)h(x) 成立, 且 lim ⁡ x → x 0 g ( x ) = a , lim ⁡ x → x 0 h ( x ) = a , \lim _{x \rightarrow x_{0}} g(x)=a, \lim _{x \rightarrow x_{0}} h(x)=a, limxx0g(x)=a,limxx0h(x)=a, lim ⁡ x → x 0 f ( x ) = a . \lim _{x \rightarrow x_{0}} f(x)=a . limxx0f(x)=a.

(3) 单调有界数列必有极限.

  1. 利用求函数极限的方法来求数列极限
第四节 函数的连续性与间断点

一、函数的连续与间断

  1. 函数连续性的定义
    (1) 设函数 y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 的某邻域内有定义, 且 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) , \lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right), limxx0f(x)=f(x0), 则称 f ( x ) f(x) f(x) x 0 x_{0} x0 点连续.
    (2) 单侧连续: 左连续 : lim ⁡ x → x 0 − 0 f ( x ) = f ( x 0 ) ; : \lim _{x \rightarrow x_{0}-0} f(x)=f\left(x_{0}\right) ; :limxx00f(x)=f(x0); 右连续 : lim ⁡ x → x 0 + 0 f ( x ) = f ( x 0 ) . : \lim _{x \rightarrow x_{0}+0} f(x)=f\left(x_{0}\right) . :limxx0+0f(x)=f(x0).
    (3) f ( x ) f(x) f(x) x 0 x_{0} x0 点连续 ⟺ \Longleftrightarrow f ( x ) f(x) f(x) x 0 x_{0} x0 既左连续又右连续.

  2. f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续: f ( x ) f(x) f(x) ( a , b ) (a, b) (a,b) 内每一点都连续, 且 f ( x ) f(x) f(x) x = a x=a x=a 处右连续,在 x = b x=b x=b 处左连续.

  3. 连续函数保持运算不变
    (1) 连续函数的和差积商(分母不为零)、复合仍是连续函数.
    (2) 一切初等函数在其定义的区间内是连续的.

  4. 间断点的定义

    设函数 y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 的某去心邻域内有定义,在此前提下如果函数有下列三种情形之一:

    (1) 在 x 0 x_{0} x0 点没有定义;
    (2) 虽在 x 0 x_{0} x0 点有定义,但 lim ⁡ x → x 0 f ( x ) \lim _{x \rightarrow x_{0}} f(x) limxx0f(x) 不存在;
    (3) 虽在 x 0 x_{0} x0 与有定义且 lim ⁡ x → x 0 f ( x ) \lim _{x \rightarrow x_{0}} f(x) limxx0f(x) 存在,但 lim ⁡ x → x 0 f ( x ) ≠ f ( x 0 ) \lim _{x \rightarrow x_{0}} f(x) \neq f\left(x_{0}\right) limxx0f(x)=f(x0);
    则称 x 0 x_{0} x0 为函数的间断点.

  5. 间断点的类型 若 x = x 0 x=x_{0} x=x0 f ( x ) f(x) f(x) 的间断点,则有:
    (1) 若 lim ⁡ x → x n f ( x ) \lim _{x \rightarrow x_{n}} f(x) limxxnf(x) 存在,则称 x = x 0 x=x_{0} x=x0 f ( x ) f(x) f(x) 的可去间断点.
    (2) 若 lim ⁡ x → x 0 − 0 f ( x ) \lim _{x \rightarrow x_{0}-0} f(x) limxx00f(x) lim ⁡ x → x 0 + 0 f ( x ) \lim _{x \rightarrow x_{0}+0} f(x) limxx0+0f(x) 都存在,但不相等, 则称 x = x 0 x=x_{0} x=x0 f ( x ) f(x) f(x) 的跳跃间断点.
    (3) 若 lim ⁡ x → x 0 − 0 f ( x ) = ∞ \lim _{x \rightarrow x_{0}-0} f(x)=\infty limxx00f(x)= lim ⁡ x → x 0 + 0 f ( x ) = ∞ , \lim _{x \rightarrow x_{0}+0} f(x)=\infty, limxx0+0f(x)=, 则称 x = x 0 x=x_{0} x=x0 f ( x ) f(x) f(x) 的无穷间断点.

    (4) 若 lim ⁡ x → x 0 f ( x ) \lim _{x \rightarrow x_{0}} f(x) limxx0f(x) 不存在, 且当 x → x 0 x \rightarrow x_{0} xx0 时函数值在摆动,则称 x = x 0 x=x_{0} x=x0 f ( x ) f(x) f(x) 的振荡间断点.

    上述间断点中:(1)(2)两类称为第一类间断点 ; (3)(4)两类称为第二类间晰点.

二、闭区间上连续函数的性质
性质 1 (有界性定理)设函数 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续, 则 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上有界. 即 ∃ M > 0 , \exists M>0, M>0, 使得对 ∀ x ∈ [ a , b ] , \forall x \in[a, b], x[a,b], ∣ f ( x ) ∣ ⩽ M . |f(x)| \leqslant M . f(x)M.
性质 2 (最大值和最小值定理)设函数 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续,则 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上取得最大 值与最小值. 即 ∃ ξ , η ∈ [ a , b ] \exists \xi, \eta \in[a, b] ξ,η[a,b],使得 f ( ξ ) = max ⁡ a ⩽ x ⩽ b { f ( x ) } , f ( η ) = min ⁡ a ⩽ x ⩽ b { f ( x ) } . f(\xi)=\max _{a \leqslant x \leqslant b}\{f(x)\}, f(\eta)=\min _{a \leqslant x \leqslant b}\{f(x)\} . f(ξ)=maxaxb{f(x)},f(η)=minaxb{f(x)}.
性质 3 (介值定理)设函数 f ( x ) f(x) f(x) 在[a,b]上连续, μ \mu μ 是介于最大值与最小值之间的任一实 数,则 ∃ ξ ∈ [ a , b ] \exists \xi \in[a, b] ξ[a,b],使得 f ( ξ ) = μ . f(\xi)=\mu . f(ξ)=μ. 性质 4 (零点定理)设函数 f ( x ) f(x) f(x) 在[ a , b ] a, b] a,b] 上连续, 且 f ( a ) f(a) f(a) f ( b ) f(b) f(b) 昇号 (即 f ( a ) f(a) f(a) ・ $f(b)<$0),那么至少存在一点 ξ ∈ ( a , b ) , \xi \in(a, b), ξ(a,b), 使得 f ( ξ ) = 0. f(\xi)=0 . f(ξ)=0.

第二章 导数与微分

第一节 导数与微分的概念
  1. 导数的定义
    设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 的某 邻域内有定义,若 lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} limΔx0ΔxΔy=limΔx0Δxf(x0+Δx)f(x0)
    ( \left(\right. ( f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 ) \left.f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right) f(x0)=limxx0xx0f(x)f(x0)) 存在,则称 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 处可导,记作 d y   d x ∣ x = x 0 \left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=x_{0}}  dxdyx=x0 f ′ ( x 0 ) . f^{\prime}\left(x_{0}\right) . f(x0).
    注 (1) 导数 f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f(x0) 反映的是 y = f ( x ) y=f(x) y=f(x) 在,点 x 0 x_{0} x0 处的变化率.
    (2) 导函数 f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h , x ∈ I f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}, x \in I f(x)=limh0hf(x+h)f(x),xI

  2. 单侧导数
    (1) 左导数 : f − ′ ( x 0 ) = lim ⁡ x → x 0 − 0 f ( x ) − f ( x 0 ) x − x 0 : f_{-}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}-0} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} :f(x0)=limxx00xx0f(x)f(x0)
    (2) 舌导数 : f + ′ ( x 0 ) = lim ⁡ x → x 0 + 0 f ( x ) − f ( x 0 ) x − x 0 : f_{+}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}+0} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} :f+(x0)=limxx0+0xx0f(x)f(x0)
    注 (1) f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f(x0) 手在的必要条件是 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 处连续.
    (2) f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f(x0) 手在\Longleftrightarrow f ′ − ( x 0 ) , f ′ + ( x 0 ) f^{\prime}-\left(x_{0}\right), f^{\prime}+\left(x_{0}\right) f(x0),f+(x0) 都素在且相等.
    (3) 两种特殊函数的可导性.
    1) x u ( 0 < u < 1 ) x^{u}(0<u<1) xu(0<u<1) x = 0 x=0 x=0 处不可导. 如 y = x 1 3 ⟹ y ′ = 1 3 x − 2 3 , x ≠ 0 y=x^{\frac{1}{3}} \Longrightarrow y^{\prime}=\frac{1}{3} x^{-\frac{2}{3}}, x \neq 0 y=x31y=31x32,x=0
    2) ∣ x ∣ |x| x x = 0 x=0 x=0 处不可导,但在 x = 0 x=0 x=0 处连续.

  3. f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上可导的定义
    若函数 f ( x ) f(x) f(x) ( a , b ) (a, b) (a,b) 内任一点可导, 且 f + ′ ( a ) f_{+}^{\prime}(a) f+(a) f − ′ ( b ) f_{-}^{\prime}(b) f(b) 都存在, 则称 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a, b] [a,b]上可导,并称 f ′ ( x ) f^{\prime}(x) f(x) 为[a,b]上的导函数.

  4. f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f(x0) 的几何意义和物理意义
    (1) f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f(x0) 的几何意义: 设函数 f ( x ) f(x) f(x) 可导,则 f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f(x0) 等于曲线 y = f ( x ) y=f(x) y=f(x) ( x 0 , f ( x 0 ) ) \left(x_{0}, f\left(x_{0}\right)\right) (x0,f(x0)) 处切线的斜率.

注:(1) 导数为无穷大时, 即导数不救在,但切线存在,为铅直切线.
(2) 曲线 y = f ( x ) y=f(x) y=f(x) 在, 点 ( x 0 , f ( x 0 ) ) \left(x_{0}, f\left(x_{0}\right)\right) (x0,f(x0)) 处切线与法线方程分别是:
1) 切线方程 y − f ( x 0 ) = f ′ ( x 0 ) ( x − x 0 ) y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) yf(x0)=f(x0)(xx0)
2) 法线方程 y − f ( x 0 ) = − 1 f ′ ( x 0 ) ( x − x 0 ) ( f ′ ( x 0 ) ≠ 0 ) y-f\left(x_{0}\right)=-\frac{1}{f^{\prime}\left(x_{0}\right)}\left(x-x_{0}\right)\left(f^{\prime}\left(x_{0}\right) \neq 0\right) yf(x0)=f(x0)1(xx0)(f(x0)=0)

(2) f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f(x0) 的物理意义
一质点作变練直线运动 s = s ( t ) , s=s(t), s=s(t), s ′ ( t 0 ) s^{\prime}\left(t_{0}\right) s(t0) 表示在 t 0 t_{0} t0 时刻瞬时速度, s ′ ′ ( t 0 ) s^{\prime \prime}\left(t_{0}\right) s(t0) 表示在 t 0 t_{0} t0 时刻的加速度。

  1. 微分的定义
    设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 的某邻域内有定义,若 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) = A Δ x + O ( Δ x ) , \Delta y=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)=A \Delta x+O(\Delta x), Δy=f(x0+Δx)f(x0)=AΔx+O(Δx), 其中 A A A Δ x \Delta x Δx 无关, 则称 y = f ( x ) y=f(x) y=f(x) x = x 0 x=x_{0} x=x0 处可微, 且 Δ y = d y + o ( Δ x ) . \Delta y=\mathrm{d} y+o(\Delta x) . Δy=dy+o(Δx).
    注:(1) 可导、可徽,连续三者之间的关系: 可导\Longleftrightarrow可徽\Longrightarrow亡连续,但反之, 不成立.

     				 1) $f(x)=|x|=\left\{\begin{array}{ll}-x, & x<0 \\ x, & x \geqslant 0\end{array},\right.$ 在 $x=0$,点不可导,但在 $x=0$,点连续.
      				2) $f(x)=\left\{\begin{array}{ll}\frac{1}{1+e^{\frac{1}{x}}}, & x \neq 0 \\ 0, & x=0\end{array}\right.$   在 $x=0$点不连续,则必在 $x=0$点不可导.
    
     (2) 函数 $y=f(x)$ 在 $x$,点可微的充要条件是 $f(x)$ 在 $x$,点可导. 此时 $A=f^{\prime}(x),$ 即 $\mathrm{d} y
    

=f^{\prime}(x) \Delta x$
(3) 一阶微分形式的不变性: 设 y = f ( u ) y=f(u) y=f(u) 可微, 则微分 d y = f ′ ( u ) d u , \mathrm{d} y=f^{\prime}(u) \mathrm{d} u, dy=f(u)du, 其中 u u u 不论是自变量还是中间变量, 以上微分形式保持不变。

第二节 求导数的方法
  1. 四则运箕的求导法则
    设函数 u ( x ) , v ( x ) u(x), v(x) u(x),v(x) 都可导,则
    (1) ( u ( x ) ± v ( x ) ) ′ = u ′ ( x ) ± v ′ ( x ) (u(x) \pm v(x))^{\prime}=u^{\prime}(x) \pm v^{\prime}(x) (u(x)±v(x))=u(x)±v(x)
    (2) ( u ( x ) v ( x ) ) ′ = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) (u(x) v(x))^{\prime}=u^{\prime}(x) v(x)+u(x) v^{\prime}(x) (u(x)v(x))=u(x)v(x)+u(x)v(x)
    (3) ( u ( x ) v ( x ) ) ′ = u ′ ( x ) v ( x ) − u ( x ) v ′ ( x ) v 2 ( x ) \left(\frac{u(x)}{v(x)}\right)^{\prime}=\frac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{v^{2}(x)} (v(x)u(x))=v2(x)u(x)v(x)u(x)v(x)

  2. 复合函数的求导法则
    u = φ ( x ) u=\varphi(x) u=φ(x) x x x 处可导, y = f ( u ) y=f(u) y=f(u) 在对应的 u = φ ( x ) u=\varphi(x) u=φ(x) 处可导,则复合函数 y = f ( φ ( x ) ) y=f(\varphi(x)) y=f(φ(x)) x x x 处可导, 且 [ f ( φ ( x ) ) ] ′ = f ′ ( u ) φ ′ ( x ) , [f(\varphi(x))]^{\prime}=f^{\prime}(u) \varphi^{\prime}(x), [f(φ(x))]=f(u)φ(x), d y   d x = d y   d u ⋅ d u   d x \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \cdot \frac{\mathrm{d} u}{\mathrm{~d} x}  dxdy= dudy dxdu

  3. 反函数的求导法则

x = φ ( y ) x=\varphi(y) x=φ(y) 在某个区间内单调、可导, 且 φ ′ ( y ) ≠ 0 , \varphi^{\prime}(y) \neq 0, φ(y)=0, 则其反函数 y = f ( x ) y=f(x) y=f(x) 在对应的区间内也可导,且 f ′ ( x ) = 1 φ ′ ( y ) , f^{\prime}(x)=\frac{1}{\varphi^{\prime}(y)}, f(x)=φ(y)1, d y   d x = 1 d x   d y \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\frac{\mathrm{d} x}{\mathrm{~d} y}}  dxdy= dydx1

  1. 隐函数的求导法则
    (1) 隐函数:设有方程 F ( x , y ) = 0 F(x, y)=0 F(x,y)=0,若当 x x x 取某区间内的任一值时,总有满足该方程唯一的值 y y y 存在 时,称方程 F ( x , y ) = 0 F(x, y)=0 F(x,y)=0 在上述区间内确定了一个隐函数 y = y ( x ) y=y(x) y=y(x).
    (2) 隐函数的求导法则:在方程 F ( x , y ) = 0 F(x, y)=0 F(x,y)=0 y y y x x x 的函数两边同时对 x x x 求导,解出导数即可.

  2. 由参数方程 { x = φ ( t ) y = ψ ( t ) \left\{\begin{array}{l}x=\varphi(t) \\ y=\psi(t)\end{array}\right. {x=φ(t)y=ψ(t) 所确定的函数的导数
    设参数方程 { x = φ ( t ) y = ψ ( t ) , \left\{\begin{array}{l}x=\varphi(t) \\ y=\psi(t)\end{array},\right. {x=φ(t)y=ψ(t),

d y   d x = d y   d t d x   d t = ψ ′ ( t ) φ ′ ( t ) d 2 y   d x 2 = d d t ( d y   d x ) d x   d t = d d t ( ψ ′ ( t ) φ ′ ( t ) ) φ ′ ( t ) = ψ ′ ′ ( t ) φ ′ ( t ) − ψ ′ ( t ) φ ′ ′ ( t ) [ φ ′ ( t ) ] 3 \begin{array}{c} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{d} x}{\mathrm{~d} t}}=\frac{\psi^{\prime}(t)}{\varphi^{\prime}(t)} \\ \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)}{\frac{\mathrm{d} x}{\mathrm{~d} t}}=\frac{\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\psi^{\prime}(t)}{\varphi^{\prime}(t)}\right)}{\varphi^{\prime}(t)}=\frac{\psi^{\prime \prime}(t) \varphi^{\prime}(t)-\psi^{\prime}(t) \varphi^{\prime \prime}(t)}{\left[\varphi^{\prime}(t)\right]^{3}} \end{array}  dxdy= dtdx dtdy=φ(t)ψ(t) dx2d2y= dtdxdtd( dxdy)=φ(t)dtd(φ(t)ψ(t))=[φ(t)]3ψ(t)φ(t)ψ(t)φ(t)
​ 注 d 2 y   d x 2 ≠ ψ ′ ′ ( t ) φ ′ ′ ( t ) \quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \neq \frac{\psi^{\prime \prime}(t)}{\varphi^{\prime \prime}(t)}  dx2d2y=φ(t)ψ(t)

第三节 高阶导数及相关变化率

一、高阶导数

  1. 高阶导数的定义:把函数 y = f ( x ) y=f(x) y=f(x) 的导数 y ′ = f ′ ( x ) y^{\prime}=f^{\prime}(x) y=f(x) 的导数,称为 y = f ( x ) y=f(x) y=f(x) 的二阶导数,记为 y ′ ′ y^{\prime \prime} y d 2 y   d x 2 \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}  dx2d2y f ′ ′ ( x ) f^{\prime \prime}(x) f(x) d 2 f ( x ) d x 2 \frac{\mathrm{d}^{2} f(x)}{\mathrm{d} x^{2}} dx2d2f(x)

类似地,二阶导数的导数称为三阶导数; 三阶导数的导数称为四阶导数; ( n − 1 ) (n-1) (n1) 阶导数的导数称为 n n n 阶导数.
我们把二阶及二阶以上的导数称为高阶导数.


(1) 函数 y = f ( x ) y=f(x) y=f(x) 本身称为 0 阶导数;导数 y ′ = f ′ ( x ) y^{\prime}=f^{\prime}(x) y=f(x) 称为一阶导数.
(2) y ′ ′ = lim ⁡ Δ x → 0 f ′ ( x 0 + Δ x ) − f ′ ( x 0 ) Δ x , y^{\prime \prime}=\lim _{\Delta x \rightarrow 0} \frac{f^{\prime}\left(x_{0}+\Delta x\right)-f^{\prime}\left(x_{0}\right)}{\Delta x}, y=limΔx0Δxf(x0+Δx)f(x0), y ′ ′ = lim ⁡ x → x 0 f ′ ( x ) − f ′ ( x 0 ) x − x 0 y^{\prime \prime}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)-f^{\prime}\left(x_{0}\right)}{x-x_{0}} y=limxx0xx0f(x)f(x0)
(3) y ( n ) = lim ⁡ Δ x → 0 f ( n − 1 ) ( x 0 + Δ x ) − f ( n − 1 ) ( x 0 ) Δ x , y^{(n)}=\lim _{\Delta x \rightarrow 0} \frac{f^{(n-1)}\left(x_{0}+\Delta x\right)-f^{(n-1)}\left(x_{0}\right)}{\Delta x}, y(n)=limΔx0Δxf(n1)(x0+Δx)f(n1)(x0), y ( n ) = lim ⁡ x → x 0 f ( n − 1 ) ( x ) − f ( n − 1 ) ( x 0 ) x − x 0 y^{(n)}=\lim _{x \rightarrow x_{0}} \frac{f^{(n-1)}(x)-f^{(n-1)}\left(x_{0}\right)}{x-x_{0}} y(n)=limxx0xx0f(n1)(x)f(n1)(x0)

  1. 高阶导数的求法
    (1) 定义法:利用高阶导数的定义,一阶一阶的求导.
    (2)初等变形法: 将函数变形成常用函数,直接套用常用函数的高阶导数结论.

    (3) 莱布尼兹公式: ( u ( x ) v ( x ) ) ( n ) = ∑ k = 0 n C n k u ( k ) ( x ) v ( n − k ) ( x ) (u(x) v(x))^{(n)}=\sum_{k=0}^{n} C_{n}^{k} u^{(k)}(x) v^{(n-k)}(x) (u(x)v(x))(n)=k=0nCnku(k)(x)v(nk)(x)

二、相关变化率(数学三不要求)
x = x ( t ) , y = y ( t ) x=x(t), y=y(t) x=x(t),y=y(t) 都是可导函数,而 x x x y y y 之间存在某种关系, 从而变化率 d x   d t , d y   d t \frac{\mathrm{d} x}{\mathrm{~d} t}, \frac{\mathrm{d} y}{\mathrm{~d} t}  dtdx, dtdy 之间也存在一定的关系,因此把这两个相依的变化率称为相关变化率.

第三章 中值定理与导数的应用

第一节 中值定理
  1. 罗尔定理
    设函数 f ( x ) f(x) f(x) 满足:(1) 在[a,b]上连续 ; ; ; (2) 在 ( a , b ) (a, b) (a,b) 内可导; ( 3 ) f ( a ) = f ( b ) (3) f(a)=f(b) (3)f(a)=f(b),则至少存在 ξ ∈ ( a , b ) , \xi \in(a, b), ξ(a,b), 使 f ′ ( ξ ) = 0. f^{\prime}(\xi)=0 . f(ξ)=0.


(1) 几何解释: 连续曲线 f ( x ) ( a ⩽ x ⩽ b ) f(x)(a \leqslant x \leqslant b) f(x)(axb) 在每一点处都存在不垂直于 x x x 轴的切线,且连接两端点的弦是水平的,则至少存在一条切线也是水平的.
(2) 定理的条件是充分的,但非必要的.

(3) 点 ξ \xi ξ 存在,但没有说 ξ \xi ξ 是否唯一及 ξ \xi ξ 的位置.

(4) 如何证明 ξ \xi ξ 是否唯一?

  1. 拉格朗日中值定理
    (1) 拉格朗日中值定理 设 f ( x ) f(x) f(x) 在[a,b]上连续,在 ( a , b ) (a, b) (a,b) 内可导, 则至少 ∃ ξ ∈ ( a , b ) , \exists \xi \in(a, b), ξ(a,b), 使 f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f^{\prime}(\xi)(b-a) f(b)f(a)=f(ξ)(ba)

注 (1) 几何解释:连续曲线 f ( x ) ( a ⩽ x ⩽ b ) f(x)(a \leqslant x \leqslant b) f(x)(axb) 在每一点处都存在不垂直于 x x x 轴的切线,则至少变在一条切线平行于连接两端点的弦.
(2) 定理的条件是充分的,但非必要的.
(3) f ( b ) − f ( a ) = f ′ [ a + θ ( b − a ) ] ( b − a ) ( 0 < θ < 1 ) f(b)-f(a)=f^{\prime}[a+\theta(b-a)](b-a) \quad(0<\theta<1) f(b)f(a)=f[a+θ(ba)](ba)(0<θ<1)
f ( x ) − f ( a ) = f ′ [ a + θ ( x − a ) ] ( x − a ) ( θ f(x)-f(a)=f^{\prime}[a+\theta(x-a)](x-a) \quad(\theta f(x)f(a)=f[a+θ(xa)](xa)(θ x x x 的函数 ) ) )
(2) 推论:苻函数 f ( x ) f(x) f(x) 在区间 I I I 上的导数恒为零,则 f ( x ) f(x) f(x) 在区间 I I I 上是一个常数.

  1. 柯西中值定理

f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 在[a,b]上连续,在 ( a , b ) (a, b) (a,b) 内可良, 且 g ′ ( x ) ≠ 0 g^{\prime}(x) \neq 0 g(x)=0,则至少存在 ξ ∈ ( a , b ) , \xi \in(a, b), ξ(a,b), 使
f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) = f ′ ( x ) g ′ ( x ) ∣ x = ξ \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=\left.\frac{f^{\prime}(x)}{g^{\prime}(x)}\right|_{x=\xi} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)=g(x)f(x)x=ξ

  1. 泰勒中值定理
    设函数 f ( x ) f(x) f(x) 在含有 x 0 x_{0} x0 的某个开区间 ( a , b ) (a, b) (a,b) 内具有直到 n + 1 n+1 n+1 阶的导数, 则 f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + 1 ( n + 1 ) ! f ( n + 1 ) ( ξ ) ( x − x 0 ) n + 1 \begin{aligned} f(x)=& f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2 !} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\cdots \\ &+\frac{1}{n !} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n}+\frac{1}{(n+1) !} f^{(n+1)}(\xi)\left(x-x_{0}\right)^{n+1} \end{aligned} f(x)=f(x0)+f(x0)(xx0)+2!1f(x0)(xx0)2++n!1f(n)(x0)(xx0)n+(n+1)!1f(n+1)(ξ)(xx0)n+1 其中 ξ \xi ξ 是在 x 0 x_{0} x0 x x x 之间(或 ξ = x 0 + θ ( x − x 0 ) , ( 0 < θ < 1 ) , x \xi=x_{0}+\theta\left(x-x_{0}\right),(0<\theta<1), x ξ=x0+θ(xx0),(0<θ<1),x 在变, θ \theta θ 也在变),则称上式为 f ( x ) f(x) f(x) x 0 x_{0} x0 n n n 阶泰勒展开式.

注:(1) 当 x 0 = 0 x_{0}=0 x0=0 时, f ( x ) = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 + ⋯ + 1 n ! f ( n ) ( 0 ) x n + R n ( x ) f(x)=f(0)+f^{\prime}(0) x+\frac{1}{2 !} f^{\prime \prime}(0) x^{2}+\cdots+\frac{1}{n !} f^{(n)}(0) x^{n}+R_{n}(x) f(x)=f(0)+f(0)x+2!1f(0)x2++n!1f(n)(0)xn+Rn(x)其中 R n ( x ) = 1 ( n + 1 ) ! f ( n + 1 ) ( θ x ) x n + 1 R_{n}(x)=\frac{1}{(n+1) !} f^{(n+1)}(\theta x) x^{n+1} Rn(x)=(n+1)!1f(n+1)(θx)xn+1
(2) 若 f ( x ) f(x) f(x) 具有 n n n 阶导数, 则 f ( x ) f(x) f(x) 只能展开成 n n n 一1 阶泰勒公式.
(3) 设 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 的邻域内连续,在 x = x 0 x=x_{0} x=x0 处有直到 n n n 阶的导数, 则
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + o ( ( x − x 0 ) n ) f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{1}{n !} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n}+o\left(\left(x-x_{0}\right)^{n}\right) f(x)=f(x0)+f(x0)(xx0)++n!1f(n)(x0)(xx0)n+o((xx0)n)

第二节 函数的单调性
  1. 单调性判别法
    y = f ( x ) y=f(x) y=f(x) [ a , b ] [a, b] [a,b] 上连续,在 ( a , b ) (a, b) (a,b) 内可导,
    (1) 若 f ′ ( x ) ⩾ 0 ( x ∈ ( a , b ) ) , f^{\prime}(x) \geqslant 0(x \in(a, b)), f(x)0(x(a,b)), y = f ( x ) y=f(x) y=f(x) [ a , b ] [a, b] [a,b] 上单调增加 ; ; ;
    (2) 若 f ′ ( x ) ⩽ 0 ( x ∈ ( a , b ) ) , f^{\prime}(x) \leqslant 0(x \in(a, b)), f(x)0(x(a,b)), y = f ( x ) y=f(x) y=f(x) [ a , b ] [a, b] [a,b] 上单调减少.
  2. 确定函数的单调区间
    (1) 用一阶导数等于零的点及一阶导数不存在点对定义域划分;
    (2)然后判断导函数在每个区间上的符号.
  3. 利用单调性确定方程的根
  4. 证明不等式
    (1) 构造恰当的辅助函数;
    (2) 利用导数确定此函数的单调区间 ;
    (3) 计算辅助函数在一个端点的函数值.
第三节 求函数的极值
  1. 极值定义
    (1) 设函数 f ( x ) f(x) f(x) x 0 x_{0} x0 的某个邻域内有定义,且存在 δ > 0 \delta>0 δ>0,当 x ∈ U ˙ ( x 0 , δ ) , x \in \dot{U}\left(x_{0}, \delta\right), xU˙(x0,δ), f ( x ) > f(x)> f(x)> f ( x 0 ) ( f\left(x_{0}\right)\left(\right. f(x0)( f ( x ) < f ( x 0 ) ) , \left.f(x)<f\left(x_{0}\right)\right), f(x)<f(x0)), 则称 x = x 0 x=x_{0} x=x0 f ( x ) f(x) f(x) 极小值点 ( ( ( 或极大值点).

注:定义的第一句话说明:极值是函数的局部性质,且极值不可能在区间端点上得到.
(2) 极值必要条件:设 y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 可导且取得极值,则 f ′ ( x 0 ) = 0. f^{\prime}\left(x_{0}\right)=0 . f(x0)=0.

​ 注:驻点和一阶导数不存在的点是可能的极值点.

  1. 极值判别法
    (1) 第一判别法(第一充分条件) 设 f ( x ) f(x) f(x) ( x 0 − δ , x 0 + δ ) \left(x_{0}-\delta, x_{0}+\delta\right) (x0δ,x0+δ) 内连续 , x 0 , x_{0} ,x0 是驻点或不可导点,
    1) 若在 ( x 0 − δ , x 0 ) \left(x_{0}-\delta, x_{0}\right) (x0δ,x0) f ′ ( x ) < 0 ( > 0 ) , f^{\prime}(x)<0(>0), f(x)<0(>0), ( x 0 , x 0 + δ ) \left(x_{0}, x_{0}+\delta\right) (x0,x0+δ) f ′ ( x ) > 0 ( < 0 ) , f^{\prime}(x)>0(<0), f(x)>0(<0), f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0取得极小值(极大值);
    2) 若在 ( x 0 − δ , x 0 ) \left(x_{0}-\delta, x_{0}\right) (x0δ,x0) ( x 0 , x 0 + δ ) \left(x_{0}, x_{0}+\delta\right) (x0,x0+δ) f ′ ( x ) f^{\prime}(x) f(x) 不改变符号,则 f ( x ) f(x) f(x) x 0 x_{0} x0 处不取得极值.
    (2) 第二判别法(第二充分条件)

​ 设 f ( x ) f(x) f(x) 在点 x 0 x_{0} x0 二阶可导, 且 f ′ ( x 0 ) = 0 f^{\prime}\left(x_{0}\right)=0 f(x0)=0,
​ 1 ) 当 f ′ ′ ( x 0 ) < 0 , f^{\prime \prime}\left(x_{0}\right)<0, f(x0)<0, f ( x 0 ) f\left(x_{0}\right) f(x0) 为极大值;
​ 2) 当 f ′ ′ ( x 0 ) > 0 , f^{\prime \prime}\left(x_{0}\right)>0, f(x0)>0, f ( x 0 ) f\left(x_{0}\right) f(x0) 为极小值 ; ; ;
​ 3) 当 f ′ ′ ( x 0 ) = 0 f^{\prime \prime}\left(x_{0}\right)=0 f(x0)=0 时,失效待定.

  1. 求最值的方法
    (1)求出可能的极值点与区间端点的函数值;
    (2)比较(1)中的函数值,得出最大值与最小值.
第四节 曲线的凹凸性
  1. 凹凸性的判别法
    f ( x ) f(x) f(x) 在[a,b]上连续,在 ( a , b ) (a, b) (a,b) 内二阶可导,则
    (1) f ′ ′ ( x ) > 0 ( x ∈ ( a , b ) ) ⟺ f ( x ) f^{\prime \prime}(x)>0(x \in(a, b)) \Longleftrightarrow f(x) f(x)>0(x(a,b))f(x) [ a , b ] [a, b] [a,b] 上的图形是口的;
    (2) f ′ ′ ( x ) < 0 ( x ∈ ( a , b ) ) ⟺ f ( x ) f^{\prime \prime}(x)<0(x \in(a, b)) \Longleftrightarrow f(x) f(x)<0(x(a,b))f(x) 在[a,b]上的图形是凸的.

  2. 拐点的定义
    (1) 设函数 f ( x ) f(x) f(x) x 0 x_{0} x0 的某个邻域内连续, 且 f ( x ) f(x) f(x) x 0 x_{0} x0 的两侧口凸性相反,则称 ( x 0 , f ( x 0 ) ) \left(x_{0}\right., \left.f\left(x_{0}\right)\right) (x0,f(x0)) 为曲线 y = f ( x ) y=f(x) y=f(x) 的拐点.

(2) 拐点的必要条件 : 设 f ( x ) f(x) f(x) x 0 x_{0} x0 二阶可导且为拐点 ⟹ f ′ ′ ( x 0 ) = 0. \Longrightarrow f^{\prime \prime}\left(x_{0}\right)=0 . f(x0)=0.
f ′ ′ ( x 0 ) = 0 \quad f^{\prime \prime}\left(x_{0}\right)=0 f(x0)=0 的,点及二阶导数不存在的点,只是有可能是拐点的横坐标.

  1. 渐近线
    (1) 水平渐近线: lim ⁡ x → ∞ f ( x ) = A \lim _{x \rightarrow \infty} f(x)=A limxf(x)=A,则称 y = A y=A y=A f ( x ) f(x) f(x) 的水平渐近线.
    \quad 有时要考虑单侧 lim ⁡ x → − ∞ f ( x ) = A , lim ⁡ x → + ∞ f ( x ) = A . \lim _{x \rightarrow-\infty} f(x)=A, \lim _{x \rightarrow+\infty} f(x)=A . limxf(x)=A,limx+f(x)=A. y = arctan ⁡ x y=\arctan x y=arctanx
    (2) 铅直渐近线 : lim ⁡ x → x 0 f ( x ) = ∞ , : \lim _{x \rightarrow x_{0}} f(x)=\infty, :limxx0f(x)=, 则称 x = x 0 x=x_{0} x=x0 f ( x ) f(x) f(x) 的铅直渐近线.

    ​ 注 \quad 同样有时考虑单侧 : lim ⁡ x → x 0 + 0 f ( x ) = ∞ , lim ⁡ x → x 0 − 0 f ( x ) = ∞ : \lim _{x \rightarrow x_{0}+0} f(x)=\infty, \lim _{x \rightarrow x_{0}-0} f(x)=\infty :limxx0+0f(x)=,limxx00f(x)=
    (3) 斜渐近线 : lim ⁡ x → ∞ f ( x ) x = k ≠ 0 , : \lim _{x \rightarrow \infty} \frac{f(x)}{x}=k \neq 0, :limxxf(x)=k=0, lim ⁡ x → ∞ ( f ( x ) − k x ) = b , \lim _{x \rightarrow \infty}(f(x)-k x)=b, limx(f(x)kx)=b, y = k x + b y=k x+b y=kx+b y = f ( x ) y=f(x) y=f(x) 的斜渐近线

    注:上面的极限讨程 x → x 0 x \rightarrow x_{0} xx0 换成或 x → x 0 + 0 ; x → ∞ x \rightarrow x_{0}+0 ; x \rightarrow \infty xx0+0;x 换成 x → + ∞ x \rightarrow+\infty x+ x → − ∞ x \rightarrow-\infty x 时, 结论也成立.

第五节 曲率
  1. 弧微分
    (1) 设 y = f ( x ) y=f(x) y=f(x) 是平面内的光滑曲线, 则弧微分 d s = 1 + ( y ′ ) 2   d x . \mathrm{d} s=\sqrt{1+\left(y^{\prime}\right)^{2}} \mathrm{~d} x . ds=1+(y)2  dx.
    (2) 若曲线方程为 { x = x ( t ) y = y ( t ) , \left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array},\right. {x=x(t)y=y(t), 则弧微分为 d s = ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2   d t . \mathrm{d} s=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} \mathrm{~d} t . ds=(x(t))2+(y(t))2  dt.
  2. 曲率计算公式: 若曲线方程为 y = f ( x ) , y=f(x), y=f(x), 则曲率 k = ∣ y ′ ′ ∣ ( 1 + ( y ′ ) 2 ) 3 / 2 k=\frac{\left|y^{\prime \prime}\right|}{\left(1+\left(y^{\prime}\right)^{2}\right)^{3 / 2}} k=(1+(y)2)3/2y
  3. 曲率半径 : R = 1 K ( K ≠ 0 ) : R=\frac{1}{K}(K \neq 0) :R=K1(K=0).

第四章 不定积分

第一节 原函数与不定积分的概念

一、原函数的概念及存在条件

  1. 原函数的定义 设函数 f ( x ) f(x) f(x) 在区间 I I I 上有定义,若存在 F ( x ) F(x) F(x) 使 F ′ ( x ) = f ( x ) , F^{\prime}(x)=f(x), F(x)=f(x), 则称 F ( x ) F(x) F(x) f ( x ) f(x) f(x) 的一个 原函数, 且 f ( x ) f(x) f(x) 所有原函数皆为 F ( x ) + C ( C ∈ R ) F(x)+C(C \in \mathbf{R}) F(x)+C(CR) 的形式.
  2. 原函数的存在条件
    (1) 必要条件: F ( x ) F(x) F(x) 可导, 是其为 f ( x ) f(x) f(x) 的原函数的必要条件.
    (2) 充分条件 : f ( x ) f(x) f(x) 连续, 是其原函数 F ( x ) F(x) F(x) 存在的充分条件.

二、不定积分的概念及性质

  1. 不定积分的定义:设 F ( x ) F(x) F(x) f ( x ) f(x) f(x) I I I 上的一个原函数,则 F ( x ) + c F(x)+c F(x)+c f ( x ) f(x) f(x) 的不定积分, 即 ∫ f ( x ) d x = F ( x ) + C \int f(x) \mathrm{d} x=F(x)+C f(x)dx=F(x)+C
    \quad (1) $ f(x)$ 的不定积分 ∫ f ( x ) d x \int f(x) \mathrm{d} x f(x)dx 就是 f ( x ) f(x) f(x) 的原函数的全体.
    (2) 连续函数一定有原函数,但未必能用初等函数表示. 如 ∫ e x 2   d x , ∫ sin ⁡ x x   d x , ∫ sin ⁡ ( x 2 ) d x \int \mathrm{e}^{x^{2}} \mathrm{~d} x, \int \frac{\sin x}{x} \mathrm{~d} x, \int \sin \left(x^{2}\right) \mathrm{d} x ex2 dx,xsinx dx,sin(x2)dx 等都不能用初等函数表示.

  2. 不定积分的性质
    (1) [ ∫ f ( x ) d x ] ′ = f ( x ) \left[\int f(x) \mathrm{d} x\right]^{\prime}=f(x) [f(x)dx]=f(x) d [ ∫ f ( x ) d x ] = f ( x ) d x \mathrm{d}\left[\int f(x) \mathrm{d} x\right]=f(x) \mathrm{d} x d[f(x)dx]=f(x)dx
    (2) ∫ F ′ ( x ) d x = F ( x ) + C \int F^{\prime}(x) \mathrm{d} x=F(x)+C F(x)dx=F(x)+C ∫ d F ( x ) = F ( x ) + C \int \mathrm{d} F(x)=F(x)+C dF(x)=F(x)+C
    (3) ∫ [ k 1 f 1 ( x ) + k 2 f 2 ( x ) ] d x = k 1 ∫ f 1 ( x ) d x + k 2 ∫ f 2 ( x ) d x , k 1 k 2 ≠ 0 \int\left[k_{1} f_{1}(x)+k_{2} f_{2}(x)\right] \mathrm{d} x=k_{1} \int f_{1}(x) \mathrm{d} x+k_{2} \int f_{2}(x) \mathrm{d} x, k_{1} k_{2} \neq 0 [k1f1(x)+k2f2(x)]dx=k1f1(x)dx+k2f2(x)dx,k1k2=0

  3. 基本积分公式
    (1) ∫ x μ d x = 1 μ + 1 x μ + 1 + c \int x^{\mu} \mathrm{d} x=\frac{1}{\mu+1} x^{\mu+1}+c xμdx=μ+11xμ+1+c
    (2) ∫ 1 x   d x = ln ⁡ ∣ x ∣ + c \int \frac{1}{x} \mathrm{~d} x=\ln |x|+c x1 dx=lnx+c
    (3) ∫ a x   d x = a x ln ⁡ a + c \int a^{x} \mathrm{~d} x=\frac{a^{x}}{\ln a}+c ax dx=lnaax+c
    (4) ∫ e x   d x = e x + c \int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}+c ex dx=ex+c
    (5) ∫ sin ⁡ x   d x = − cos ⁡ x + c \int \sin x \mathrm{~d} x=-\cos x+c sinx dx=cosx+c
    (6) ∫ cos ⁡ x   d x = sin ⁡ x + c \int \cos x \mathrm{~d} x=\sin x+c cosx dx=sinx+c
    (7) ∫ tan ⁡ x   d x = ln ⁡ ∣ sec ⁡ x ∣ + c \int \tan x \mathrm{~d} x=\ln |\sec x|+c tanx dx=lnsecx+c
    (8) ∫ cot ⁡ x d x = − ln ⁡ ∣ csc ⁡ x ∣ + c \int \cot x d x=-\ln |\csc x|+c cotxdx=lncscx+c
    (9) ∫ sec ⁡ x   d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + c \int \sec x \mathrm{~d} x=\ln |\sec x+\tan x|+c secx dx=lnsecx+tanx+c
    (10) ∫ csc ⁡ x   d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + c \int \csc x \mathrm{~d} x=\ln |\csc x-\cot x|+c cscx dx=lncscxcotx+c
    (11) ∫ sec ⁡ 2 x   d x = tan ⁡ x + c \int \sec ^{2} x \mathrm{~d} x=\tan x+c sec2x dx=tanx+c
    (12) ∫ csc ⁡ 2 x   d x = − cot ⁡ x + c \int \csc ^{2} x \mathrm{~d} x=-\cot x+c csc2x dx=cotx+c

(13) ∫ sec ⁡ x tan ⁡ x   d x = sec ⁡ x + c \int \sec x \tan x \mathrm{~d} x=\sec x+c secxtanx dx=secx+c
(14) ∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + c \int \csc x \cot x d x=-\csc x+c cscxcotxdx=cscx+c
(15) ∫ 1 1 + x 2   d x = arctan ⁡ x + c \int \frac{1}{1+x^{2}} \mathrm{~d} x=\arctan x+c 1+x21 dx=arctanx+c
(16) ∫ d x 1 − x 2 = arcsin ⁡ x + c \int \frac{\mathrm{d} x}{\sqrt{1-x^{2}}}=\arcsin x+c 1x2 dx=arcsinx+c
(17) ∫ 1 a 2 + x 2   d x = 1 a arctan ⁡ x a + c \int \frac{1}{a^{2}+x^{2}} \mathrm{~d} x=\frac{1}{a} \arctan \frac{x}{a}+c a2+x21 dx=a1arctanax+c
(18) ∫ 1 a 2 − x 2   d x = 1 2 a ln ⁡ ∣ a + x a − x ∣ + c \int \frac{1}{a^{2}-x^{2}} \mathrm{~d} x=\frac{1}{2 a} \ln \left|\frac{a+x}{a-x}\right|+c a2x21 dx=2a1lnaxa+x+c
(19) ∫ d x a 2 − x 2 = arcsin ⁡ x a + c \int \frac{\mathrm{d} x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+c a2x2 dx=arcsinax+c
(20) ∫ 1 x 2 ± a 2   d x = ln ⁡ ∣ x + x 2 ± a 2 ∣ + c \int \frac{1}{\sqrt{x^{2} \pm a^{2}}} \mathrm{~d} x=\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+c x2±a2 1 dx=lnx+x2±a2 +c

第二节 求不定积分的方法

一、求不定积分的基本方法

  1. 直接积分法
    直接利用或将被积函数适当变形后再利用不定积分性质和基本积分公式求解.

  2. 换元法

(1) 第一类换元法(沫微分法)
∫ f ( φ ( x ) ) ⋅ φ ′ ( x ) d x = ∫ f ( u ) d u = F ( u ) + C = F ( φ ( x ) ) + C \int f(\varphi(x)) \cdot \varphi^{\prime}(x) \mathrm{d} x=\int f(u) \mathrm{d} u=F(u)+C=F(\varphi(x))+C f(φ(x))φ(x)dx=f(u)du=F(u)+C=F(φ(x))+C
(2) 第二类换元法(第二类换元法)
∫ f ( x ) d x x = φ ( t ) ∫ f ( φ ( t ) ) φ ′ ( t ) d t = F ( t ) + c = F ( φ − 1 ( x ) ) + c \int f(x) \mathrm{d} x \stackrel{x=\varphi(t)}{ } \int f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t=F(t)+c=F\left(\varphi^{-1}(x)\right)+c f(x)dxx=φ(t)f(φ(t))φ(t)dt=F(t)+c=F(φ1(x))+c
\quad 常见的第二类换元有:
(1) 被积函数 中含有 a 2 − x 2 \sqrt{a^{2}-x^{2}} a2x2 , 可诸用 x = a sin ⁡ t x=a \sin t x=asint
(2) 被积函数中含有 x 2 − a 2 \sqrt{x^{2}-a^{2}} x2a2 , 可试用 x = a x=a x=a sect
(3) 被积函数中含有 a 2 + x 2 \sqrt{a^{2}+x^{2}} a2+x2 , 可试用 x = a tan ⁡ t x=a \tan t x=atant
(4) 当被积函数分母的最高次数高于分子的最高次变时,可试用倒代换 x = 1 t x=\frac{1}{t} x=t1
(5) 当被积函数是由 a x a^{x} ax e x \mathrm{e}^{x} ex 所构成的代数式时, 可试用指数代换 t = a x t=a^{x} t=ax t = e x t=\mathrm{e}^{x} t=ex

  1. 分部积分法 : ∫ u ( x ) d v ( x ) = u ( x ) v ( x ) − ∫ v ( x ) d u ( x ) : \int u(x) \mathrm{d} v(x)=u(x) v(x)-\int v(x) \mathrm{d} u(x) :u(x)dv(x)=u(x)v(x)v(x)du(x)

注 (1) v ( x ) v(x) v(x) 要容易求得.
(2) 要求 ∫ v ( x ) d u ( x ) \int v(x) \mathrm{d} u(x) v(x)du(x) ∫ u ( x ) d v ( x ) \int u(x) \mathrm{d} v(x) u(x)dv(x) 易积.
(3) 当被积函数为不同类的两个函数之积时,要考虑分部积分.

二、有理函数、三角函数有理式及简单无理函数的积分

  1. 有理函数的积分:将有理函数分解成多项式及部分分式之和,再积分.

  2. 三角函数有理式的积分
    (1) 由 sin ⁡ x , cos ⁡ x \sin x, \cos x sinx,cosx 以及常数经过有限次的四则运算所构成的函数,称为三角函数有理式.
    (2) 利用万能公式(即作变换 u = tan ⁡ x 2 u=\tan \frac{x}{2} u=tan2x) 将三角函数有理式转化为有理函数的积分.即 ∫ R ( sin ⁡ x , cos ⁡ x ) d x = ∫ R ( 2 u 1 + u 2 , 1 − u 2 1 + u 2 ) 2   d u 1 + u 2 \int R(\sin x, \cos x) \mathrm{d} x=\int R\left(\frac{2 u}{1+u^{2}}, \frac{1-u^{2}}{1+u^{2}}\right) \frac{2 \mathrm{~d} u}{1+u^{2}} R(sinx,cosx)dx=R(1+u22u,1+u21u2)1+u22 du

  3. 简单无理函数的积分
    一般是通过变量代换去掉根号,将下面的两种简单无理函数的积分转化为有理函数的积分。

(1) ∫ R ( x , a x + b n ) d x , \int R(x, \sqrt[n]{a x+b}) \mathrm{d} x, R(x,nax+b )dx, 可作 u = a x + b n u=\sqrt[n]{a x+b} u=nax+b 代换,化为有理函数.
(2) ∫ R ( x , a x + b c x + e n ) d x , \int R\left(x, \sqrt[n]{\frac{a x+b}{c x+e}}\right) \mathrm{d} x, R(x,ncx+eax+b )dx, 可作 u = a x + b c x + e n u=\sqrt[n]{\frac{a x+b}{c x+e}} u=ncx+eax+b 代换,化为有理函数.

  1. 两种常见积分的求解方法
    (1) ∫ m x + n a x 2 + b x + c d x \int \frac{m x+n}{a x^{2}+b x+c} d x ax2+bx+cmx+ndx (2) ∫ m x + n a x 2 + b x + c d x \int \frac{m x+n}{\sqrt{a x^{2}+b x+c}} d x ax2+bx+c mx+ndx
    对于上面的两种积分,可先将 a x 2 + b x + c a x^{2}+b x+c ax2+bx+c 配方成 a ( x − p ) 2 + q a(x-p)^{2}+q a(xp)2+q 的形式,再作变量代换来积分.

第五节 定积分

第一节 定积分的概念及性质
  1. 定积分的定义

设函数 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上有界,在 [ a , b ] [a, b] [a,b] 中任意插入若干个分点
a = x 0 < x 1 < ⋯ < x n = b a=x_{0}<x_{1}<\cdots<x_{n}=b a=x0<x1<<xn=b
把区间[a,b]分成 n n n 个小区间
[ x 0 , x 1 ] , [ x 1 , x 2 ] , ⋯   , [ x n − 1 , x n ] \left[x_{0}, x_{1}\right], \quad\left[x_{1}, x_{2}\right], \quad \cdots, \quad\left[x_{n-1}, x_{n}\right] [x0,x1],[x1,x2],,[xn1,xn]
各个小区间的长度依次为
Δ x 1 = x 1 − x 0 , ⋯   , Δ x n = x n − x n − 1 , \Delta x_{1}=x_{1}-x_{0}, \quad \cdots, \quad \Delta x_{n}=x_{n}-x_{n-1}, Δx1=x1x0,,Δxn=xnxn1,
在每个小区间 [ x i − 1 , x i ] \left[x_{i-1}, x_{i}\right] [xi1,xi] 上任取一点 ξ i \xi_{i} ξi 作函数值 f ( ξ i ) f\left(\xi_{i}\right) f(ξi) 与小区间长度 Δ x i \Delta x_{i} Δxi 乘积
f ( ξ i ) Δ x i ( i = 1 , 2 , ⋯   , n ) f\left(\xi_{i}\right) \Delta x_{i} \quad(i=1,2, \cdots, n) f(ξi)Δxi(i=1,2,,n)
并作出和式
S = ∑ n f ( ξ i ) Δ x i ,  记  λ = max ⁡ { Δ x 1 , ⋯   , Δ x n } S=\sum^{n} f\left(\xi_{i}\right) \Delta x_{i}, \quad \text { 记 } \lambda=\max \left\{\Delta x_{1}, \cdots, \Delta x_{n}\right\} S=nf(ξi)Δxi,  λ=max{Δx1,,Δxn}
如果不论对[a,b]怎样分法,也不论在小区间 [ x i − 1 , x i ] \left[x_{i-1}, x_{i}\right] [xi1,xi] 上点 ξ i \xi_{i} ξi 怎样取法,只要当 λ → 0 \lambda \rightarrow 0 λ0 时, 和 S S S 总趋于确定的 极限 I , I, I, 这时我们称这个极限 I I I 为函数 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上的定积分,记为
∫ a b f ( x ) d x ≜ lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \int_{a}^{b} f(x) \mathrm{d} x \triangleq \lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta x_{i} abf(x)dxλ0limi=1nf(ξi)Δxi
注:(1) 定积分是一个数,仅与 f ( x ) f(x) f(x) 及[a,b]有关,而与积分变量的记号无关.
 即  ∫ a b f ( x ) d x = ∫ a b f ( t ) d t = ∫ a b f ( u ) d u \text { 即 } \int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} f(t) \mathrm{d} t=\int_{a}^{b} f(u) \mathrm{d} u   abf(x)dx=abf(t)dt=abf(u)du
​ (2) f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上可积的充分条件 : f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续(或者是 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]有界且只有有限个间断点).

  1. 定积分的性贡
    (1) ∫ a b ( k 1 f ( x ) ± k 2 g ( x ) ) d x = k 1 ∫ a b f ( x ) d x ± k 2 ∫ a b g ( x ) d x \int_{a}^{b}\left(k_{1} f(x) \pm k_{2} g(x)\right) \mathrm{d} x=k_{1} \int_{a}^{b} f(x) \mathrm{d} x \pm k_{2} \int_{a}^{b} g(x) \mathrm{d} x ab(k1f(x)±k2g(x))dx=k1abf(x)dx±k2abg(x)dx
    (2) ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x \quad abf(x)dx=acf(x)dx+cbf(x)dx (不论 a , b , c a, b, c a,b,c 的相对位置如何,结论都成立. ) ) )
    (3) ∫ a b 1   d x = b − a \int_{a}^{b} 1 \mathrm{~d} x=b-a ab1 dx=ba
    (4) f ( x ) ⩾ 0 , x ∈ [ a , b ] , f(x) \geqslant 0, x \in[a, b], f(x)0,x[a,b], ∫ a b f ( x ) d x ⩾ 0 ( a < b ) \int_{a}^{b} f(x) \mathrm{d} x \geqslant 0(a<b) abf(x)dx0(a<b)

​ 推论 1 f ( x ) ⩽ g ( x ) , x ∈ [ a , b ] , 1 \quad f(x) \leqslant g(x), x \in[a, b], 1f(x)g(x),x[a,b], ∫ a b f ( x ) d x ⩽ ∫ a b g ( x ) d x ( a < b ) \int_{a}^{b} f(x) \mathrm{d} x \leqslant \int_{a}^{b} g(x) \mathrm{d} x(a<b) abf(x)dxabg(x)dx(a<b)
​ 推论2 ∣ ∫ a b f ( x ) d x ∣ ⩽ ∫ a b ∣ f ( x ) ∣ d x ( a < b ) \quad\left|\int_{a}^{b} f(x) \mathrm{d} x\right| \leqslant \int_{a}^{b}|f(x)| \mathrm{d} x \quad(a<b) abf(x)dxabf(x)dx(a<b)

(5) 设 M M M m m m f ( x ) f(x) f(x) 在[a,b]上蛇最大值和最小值,则
m ( b − a ) ⩽ ∫ a b f ( x ) d x ⩽ M ( b − a ) m(b-a) \leqslant \int_{a}^{b} f(x) \mathrm{d} x \leqslant M(b-a) m(ba)abf(x)dxM(ba)
(6) (定积分中值定理)若 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续,则存在 ξ ∈ ( a , b ) \xi \in(a, b) ξ(a,b) 使 ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_{a}^{b} f(x) \mathrm{d} x=f(\xi)(b-a) abf(x)dx=f(ξ)(ba)
f ( x ) \quad f(x) f(x) [ a , b ] [a, b] [a,b] 上的平均值,即“平均高度”为 1 b − a ∫ a b f ( x ) d x . \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x . ba1abf(x)dx.

  1. 定积分的几何意义
    (1) 若 f ( x ) ⩾ 0 , x ∈ [ a , b ] , f(x) \geqslant 0, x \in[a, b], f(x)0,x[a,b], ∫ a b f ( x ) d x \int_{a}^{b} f(x) \mathrm{d} x abf(x)dx 表示曲边梯形的面积.
    (2) 若 f ( x ) ⩽ 0 , x ∈ [ a , b ] , f(x) \leqslant 0, x \in[a, b], f(x)0,x[a,b], ∫ a b f ( x ) d x \int_{a}^{b} f(x) \mathrm{d} x abf(x)dx 表示曲边梯形面积的负值.
    (3) 若 f ( x ) f(x) f(x) Γ a , b \Gamma a, b Γa,b ]上可取正值利负值,则在 x x x 轴上方的面积赋“十”,在 x x x 轴下方的面积 赋“一”,从而 ∫ a b f ( x ) d x \int_{a}^{b} f(x) \mathrm{d} x abf(x)dx 表示为介于 x x x , x = a , x = b , x=a, x=b ,x=a,x=b f ( x ) f(x) f(x) 的图形之间的各部分面积的代数和.
    (4) 由 x x x 轴, x = a , x = b x=a, x=b x=a,x=b f ( x ) f(x) f(x) 所围成图形的面积为 ∫ 1 b ∣ f ( x ) ∣ d x \int_{1}^{b}|f(x)| \mathrm{d} x 1bf(x)dx.
第二节 定积分的计算

一、变上限定积分

  1. 变上限定积分的定义
    Φ ( x ) = ∫ f x f ( t ) d t \Phi(x)=\int_{f}^{x} f(t) \mathrm{d} t Φ(x)=fxf(t)dt f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上的变上限定积分.

  2. 变上限定积分的性质

若函数 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续, 则 Φ ( x ) = ∫ a x f ( t ) d t \Phi(x)=\int_{a}^{x} f(t) \mathrm{d} t Φ(x)=axf(t)dt [ a , b ] [a, b] [a,b] 上具有导数, A \mathrm{A} A
Φ ′ ( x ) = d d x ( ∫ a x f ( t ) d t ) = f ( x ) , x ∈ [ a , b ] \Phi^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(\int_{a}^{x} f(t) \mathrm{d} t\right)=f(x), \quad x \in[a, b] Φ(x)=dxd(axf(t)dt)=f(x),x[a,b]
注 (1) ( ∫ a ϕ ( x ) f ( t ) d t ) ′ = f ( φ ( x ) ) φ ′ ( x ) \left(\int_{a}^{\phi(x)} f(t) \mathrm{d} t\right)^{\prime}=f(\varphi(x)) \varphi^{\prime}(x) (aϕ(x)f(t)dt)=f(φ(x))φ(x)

​ (2) ( ∫ ψ ( x ) p ( x ) f ( t ) d t ) ′ = f ( φ ( x ) ) φ ′ ( x ) − f ( ψ ( x ) ) ψ ′ ( x ) \left(\int_{\psi(x)}^{p(x)} f(t) \mathrm{d} t\right)^{\prime}=f(\varphi(x)) \varphi^{\prime}(x)-f(\psi(x)) \psi^{\prime}(x) (ψ(x)p(x)f(t)dt)=f(φ(x))φ(x)f(ψ(x))ψ(x)

  1. 原函数存在定理
    若函数 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续,则 Φ ( x ) = ∫ a x f ( t ) d t \Phi(x)=\int_{a}^{x} f(t) \mathrm{d} t Φ(x)=axf(t)dt f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上的一个原函数.

注:(1) 该定理给出了构造原函数的一般方法.
(2) 不定积分的本质是定积分 ∫ f ( x ) d x = ∫ a x f ( t ) d t + C . \int f(x) \mathrm{d} x=\int_{a}^{x} f(t) \mathrm{d} t+C . f(x)dx=axf(t)dt+C.

二、定积分的计算

  1. 牛顿一莱布尼次公式: 设 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续, 则 ∫ a b f ( x ) d x = F ( b ) − F ( a ) ≜ F ( x ) ∣ a b \int_{a}^{b} f(x) \mathrm{d} x=F(b)-\left.F(a) \triangleq F(x)\right|_{a} ^{b} abf(x)dx=F(b)F(a)F(x)ab
    \quad 该定理的条件是 f ( x ) f(x) f(x) 连续或分段连续.
  2. 定积分的换元法与分部积分法
    (1) 定积分的换元法 : ∫ a b f ( x ) d x = x = φ ( t ) ∫ a β f ( φ ( t ) ) φ ′ ( t ) d t : \int_{a}^{b} f(x) \mathrm{d} x \stackrel{x=\varphi(t)}{=} \int_{a}^{\beta} f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t :abf(x)dx=x=φ(t)aβf(φ(t))φ(t)dt
    \quad (1) 换元心须要换积分限.
    (2) 需要换元的类型及其他注意事项与不定积分的类似.
    (2) 定积分的分部积分法 : ∫ a b u ( x ) d v ( x ) = u ( x ) v ( x ) ∣ a b − ∫ a b v ( x ) d u ( x ) : \int_{a}^{b} u(x) \mathrm{d} v(x)=\left.u(x) v(x)\right|_{a} ^{b}-\int_{a}^{b} v(x) \mathrm{d} u(x) :abu(x)dv(x)=u(x)v(x)ababv(x)du(x)
  3. 几个常用公式
    (1) 奇、偶函数及周期函数的积分性质.
    1) 若 f ( x ) f(x) f(x) [ − a , a ] [-a, a] [a,a] 上连续,且为偶函数,则 ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x . \int_{-a}^{a} f(x) \mathrm{d} x=2 \int_{0}^{a} f(x) \mathrm{d} x . aaf(x)dx=20af(x)dx.
    2) 若 f ( x ) f(x) f(x) [ − a , a ] [-a, a] [a,a] 上连续, 且为奇函数,则 ∫ − a a f ( x ) d x = 0. \int_{-a}^{a} f(x) \mathrm{d} x=0 . aaf(x)dx=0.
    3) 设 f ( x ) f(x) f(x) 是以 l l l 为周期的连续函数,则 ∫ a a + l f ( x ) d x \int_{a}^{a+l} f(x) \mathrm{d} x aa+lf(x)dx 的值与 a a a 无关.
    (2) ∫ 0 π 2 sin ⁡ n x   d x = ∫ 0 π 2 cos ⁡ n x   d x = { ( n − 1 ) ! ! n ! ! ⋅ π 2 n  为偶数  ( n − 1 ) ! ! n ! ! n  为奇数  \int_{0}^{\frac{\pi}{2}} \sin ^{n} x \mathrm{~d} x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{~d} x=\left\{\begin{array}{ll}\frac{(n-1) ! !}{n ! !} \cdot \frac{\pi}{2} & n \text { 为偶数 } \\ \frac{(n-1) ! !}{n ! !} & n \text { 为奇数 }\end{array}\right. 02πsinnx dx=02πcosnx dx={n!!(n1)!!2πn!!(n1)!!n 为偶数 n 为奇数 
    (3) ∫ 0 a a 2 − x 2   d x = 1 4 π a 2 \int_{0}^{a} \sqrt{a^{2}-x^{2}} \mathrm{~d} x=\frac{1}{4} \pi a^{2} 0aa2x2  dx=41πa2
第三节 广义积分
  1. 无穷区间上的广义积分
    (1) ∫ a + ∞ f ( x ) d x = lim ⁡ b → + ∞ ∫ a b f ( x ) d x \int_{a}^{+\infty} f(x) \mathrm{d} x=\lim _{b \rightarrow+\infty} \int_{a}^{b} f(x) \mathrm{d} x a+f(x)dx=limb+abf(x)dx
    (2) ∫ − ∞ b f ( x ) d x = lim ⁡ a → − ∞ ∫ a b f ( x ) d x \int_{-\infty}^{b} f(x) \mathrm{d} x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) \mathrm{d} x bf(x)dx=limaabf(x)dx
    (3) ∫ − ∞ 1 ∞ f ( x ) d x = ∫ − ∞ c f ( x ) d x + ∫ c + ∞ f ( x ) d x , \int_{-\infty}^{1 \infty} f(x) \mathrm{d} x=\int_{-\infty}^{c} f(x) \mathrm{d} x+\int_{c}^{+\infty} f(x) \mathrm{d} x, 1f(x)dx=cf(x)dx+c+f(x)dx, 其中 c c c 为任意给定的实数,通常取 0. 0 . 0.
    \quad (1) ∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ 0 f ( x ) d x + ∫ 0 + ∞ f ( x ) d x \int_{-\infty}^{+\infty} f(x) \mathrm{d} x=\int_{-\infty}^{0} f(x) \mathrm{d} x+\int_{0}^{+\infty} f(x) \mathrm{d} x +f(x)dx=0f(x)dx+0+f(x)dx
    (2) ∫ − c ( s + ∞ f ( x ) d x \int_{-c(s}^{+\infty} f(x) \mathrm{d} x c(s+f(x)dx 收玫的充委条件 : ∫ − ∞ c f ( x ) d x 5 5 ∫ c + ∞ f ( x ) d x : \int_{-\infty}^{c} f(x) \mathrm{d} x \stackrel{5}{5} \int_{c}^{+\infty} f(x) \mathrm{d} x :cf(x)dx55c+f(x)dx 都收敘.
    (3) ∫ − ∞ + ∞ f ( x ) d x \int_{-\infty}^{+\infty} f(x) \mathrm{d} x +f(x)dx 的收玫性与 c c c 的选择无关.

  2. 无界函数的广义积分
    (1) ∫ a b f ( x ) d x = lim ⁡ x → + 0 f ( x ) = ∞ lim ⁡ ε → 0 + 0 ∫ a + ε b f ( x ) d x \int_{a}^{b} f(x) \mathrm{d} x \stackrel{\lim _{x \rightarrow+0} f(x)=\infty}{=} \lim _{\varepsilon \rightarrow 0+0} \int_{a+\varepsilon}^{b} f(x) \mathrm{d} x abf(x)dx=limx+0f(x)=limε0+0a+εbf(x)dx
    (2) ∫ a b f ( x ) d x = lim ⁡ x → b − 0 f ( x ) = ∞ lim ⁡ ε → 0 + 0 ∫ a b − ε f ( x ) d x \int_{a}^{b} f(x) \mathrm{d} x \stackrel{\lim _{x \rightarrow b-0} f(x)=\infty}{=} \lim _{\varepsilon \rightarrow 0+0} \int_{a}^{b-\varepsilon} f(x) \mathrm{d} x abf(x)dx=limxb0f(x)=limε0+0abεf(x)dx
    (3) ∫ a b f ( x ) d x = lim ⁡ x → c ( x ) = ∞ ∫ a t f ( x ) d x + ∫ c b f ( x ) d x ( a < c < b ) \int_{a}^{b} f(x) \mathrm{d} x \stackrel{\lim _{x \rightarrow c}(x)=\infty}{=} \int_{a}^{t} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x \quad(a<c<b) abf(x)dx=limxc(x)=atf(x)dx+cbf(x)dx(a<c<b)
    ∫ a b f ( x ) d x \quad \int_{a}^{b} f(x) \mathrm{d} x abf(x)dx 收敘的充要条件 : ∫ a r f ( x ) d x : \int_{a}^{r} f(x) \mathrm{d} x :arf(x)dx ∫ c b f ( x ) d x \int_{c}^{b} f(x) \mathrm{d} x cbf(x)dx 都收敛.

  3. 两个重要结论

(1) ∫ 1 + ∞ 1 x p   d x : 当 p > 1 \int_{1}^{+\infty} \frac{1}{x^{p}} \mathrm{~d} x: {当} p>1 1+xp1 dx:p>1 时,收敛;当 p ⩽ 1 p \leqslant 1 p1 时,发散.

(2) ∫ 0 1 1 x p   d x : \int_{0}^{1} \frac{1}{x^{p}} \mathrm{~d} x: 01xp1 dx: 0 < p < 1 0<p<1 0<p<1 时,收敛;当 p ⩾ 1 p \geqslant 1 p1 时,发散.

第六章 定积分的应用

第一节 定积分在几何上的应用
  1. 微元法
    (1) 根据问题的具体情况,选取一个变量(如 x x x 为积分变量),并确定所求量的变化区间 [ a , b ] [a, b] [a,b]
    (2) 任取 [ x , x + d x ] ⊂ [ a , b ] [x, x+\mathrm{d} x] \subset[a, b] [x,x+dx][a,b], 把所求量 A A A [ x , x + d x ] [x, x+\mathrm{d} x] [x,x+dx] 上的部分量 Δ A \Delta A ΔA 近似为 d A = f ( x ) d x \mathrm{d} A= f(x) \mathrm{d} x dA=f(x)dx
    (3) 所求量 A = ∫ a b f ( x ) d x A=\int_{a}^{b} f(x) \mathrm{d} x A=abf(x)dx

  2. 平面图形的面积

(1) 解题步骤:
1) 先画出草图;2)选择积分变量;确定积分限;3)取面积微元 ;4)计算定积分得面积.
(2) 由曲线 y = f 1 ( x ) , y = f 2 ( x ) y=f_{1}(x), y=f_{2}(x) y=f1(x),y=f2(x) 及直线 x = a , x = b ( a < b ) x=a, x=b(a<b) x=a,x=b(a<b) 所围成的平面图形面积为
S = ∫ a b ∣ f 1 ( x ) − f 2 ( x ) ∣ d x S=\int_{a}^{b}\left|f_{1}(x)-f_{2}(x)\right| \mathrm{d} x S=abf1(x)f2(x)dx
(3) 由 曲线 x = g 1 ( y ) , y = g 2 ( y ) x=g_{1}(y), y=g_{2}(y) x=g1(y),y=g2(y) 及直线 y = c , y = d ( c < d ) y=c, y=d(c<d) y=c,y=d(c<d) 所围成的平面图形面积为
S = ∫ c d ∣ g 1 ( y ) − g 2 ( y ) ∣ d y S=\int_{c}^{d}\left|g_{1}(y)-g_{2}(y)\right| \mathrm{d} y S=cdg1(y)g2(y)dy
(4) 由曲线 ρ = ρ ( θ ) \rho=\rho(\theta) ρ=ρ(θ) 及射线 θ = α , θ = β ( α < β ) \theta=\alpha, \theta=\beta(\alpha<\beta) θ=α,θ=β(α<β) 所围成的曲边朗形面积为
S = 1 2 ∫ α β [ ρ ( θ ) ] 2   d θ S=\frac{1}{2} \int_{\alpha}^{\beta}[\rho(\theta)]^{2} \mathrm{~d} \theta S=21αβ[ρ(θ)]2 dθ

  1. 平行截面面积已知的立体体积
    (1) 平行截面的面积为 S ( x ) , x ∈ [ a , b ] S(x), x \in[a, b] S(x),x[a,b] 的立体体积为 V = ∫ a b S ( x ) d x . V=\int_{a}^{b} S(x) \mathrm{d} x . V=abS(x)dx.
    (2) 由连续曲线 y = f ( x ) y=f(x) y=f(x), 直线 x = a , x = b x=a, x=b x=a,x=b x x x 轴所围成的平面图形绕 x x x 轴旋转一周而成的立体的体积为 V = ∫ a b π f 2 ( x ) d x V=\int_{a}^{b} \pi f^{2}(x) \mathrm{d} x V=abπf2(x)dx
    (3) 由连续曲线 x = g ( y ) x=g(y) x=g(y), 直线 y = c , y = d y=c, y=d y=c,y=d y y y 轴所围成的平面图形绕 y y y 轴旋转一周所得的旋转体的体积为 V = π ∫ c d [ g ( y ) ] 2   d y . V=\pi \int_{c}^{d}[g(y)]^{2} \mathrm{~d} y . V=πcd[g(y)]2 dy.

  2. 平面曲线的弧长
    (1) 若 L : y = f ( x ) , a ⩽ x ⩽ b , L: y=f(x), a \leqslant x \leqslant b, L:y=f(x),axb, s = ∫ a b 1 + ( f ′ ( x ) ) 2   d x s=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{~d} x s=ab1+(f(x))2  dx
    (2) 若 L : x = g ( y ) , c ⩽ y ⩽ d , L: x=g(y), c \leqslant y \leqslant d, L:x=g(y),cyd, s = ∫ c d 1 + [ φ ′ ( y ) ] 2   d y s=\int_{c}^{d} \sqrt{1+\left[\varphi^{\prime}(y)\right]^{2}} \mathrm{~d} y s=cd1+[φ(y)]2  dy
    (3) 若 L : r = r ( θ ) , α < θ < β , L: r=r(\theta), \alpha<\theta<\beta, L:r=r(θ),α<θ<β, s = ∫ a β [ ρ ( θ ) ] 2 + [ ρ ′ ( θ ) ] 2   d θ s=\int_{a}^{\beta} \sqrt{[\rho(\theta)]^{2}+\left[\rho^{\prime}(\theta)\right]^{2}} \mathrm{~d} \theta s=aβ[ρ(θ)]2+[ρ(θ)]2  dθ
    (4) 若 L : { x = x ( t ) y = y ( t ) , α ⩽ t ⩽ β L:\left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array}, \alpha \leqslant t \leqslant \beta\right. L:{x=x(t)y=y(t),αtβ,则 s = ∫ a β ( x ′ ( t ) ) 2 + ( y ′ ( t ) ) 2   d t s=\int_{a}^{\beta} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} \mathrm{~d} t s=aβ(x(t))2+(y(t))2  dt

  3. 旋转体的侧面积
    y = f ( x ) , a ⩽ x ⩽ b , y=f(x), a \leqslant x \leqslant b, y=f(x),axb, S 侧 = ∫ a b 2 π ∣ f ( x ) ∣ 1 + [ f ′ ( x ) ] 2   d x S_{\text {侧}}=\int_{a}^{b} 2 \pi|f(x)| \sqrt{1+\left[f^{\prime}(x)\right]^{2}} \mathrm{~d} x S=ab2πf(x)1+[f(x)]2  dx

  4. 连续函数的平均值
    若连续函数 f ( x ) , x ∈ [ a , b ] , f(x), x \in[a, b], f(x),x[a,b], f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上的平均值为 1 b − a ∫ a b f ( x ) d x . \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x . ba1abf(x)dx.

第二节 定积分在物理上的应用
  1. 变力做功
    设变力函数 f ( x ) f(x) f(x) 的变化区间为 [ a , b ] , [a, b], [a,b], 则变力所做的功 W = ∫ a b f ( x ) d x . W=\int_{a}^{b} f(x) \mathrm{d} x . W=abf(x)dx.
  2. 水压力
    设平面薄板的边界曲线为

y = f 1 ( x ) , y = f 2 ( x ) , ( f 1 ( x ) ⩽ f 2 ( x ) ) , x = a , x = b , ( a ⩽ b ) y=f_{1}(x), \quad y=f_{2}(x), \quad\left(f_{1}(x) \leqslant f_{2}(x)\right), \quad x=a, \quad x=b, \quad(a \leqslant b) y=f1(x),y=f2(x),(f1(x)f2(x)),x=a,x=b,(ab)
​ 把该薄板铅直没入密度为 ρ \rho ρ 的液体中. 取 x x x 轴铅直向下, y y y 轴水平向右且与夜面重合,则 平板一侧所受的压力为
P = ρ g ∫ a b x [ f 2 ( x ) − f 1 ( x ) ] d x P=\rho g \int_{a}^{b} x\left[f_{2}(x)-f_{1}(x)\right] \mathrm{d} x P=ρgabx[f2(x)f1(x)]dx

第七章 微分方程

第一节 微分方程的基本概念
  1. 微分方程及其阶
    (1) 微分方程:含有一完末知函数及其导数或微分的方程,称为(常)微分方程.
    (2) 微分方程的阶:微分方程中所出现的未知函数的最高阶导数的阶数,称为微分方程的阶.

n n n 阶微分方程的一般形式为 F ( x , y , y ′ , ⋯   , y ( n ) ) = 0 F\left(x, y, y^{\prime}, \cdots, y^{(n)}\right)=0 F(x,y,y,,y(n))=0 y ( n ) = f ( x , y , y ′ , ⋯   , y ( n − 1 ) ) , y^{(n)}=f\left(x, y, y^{\prime}, \cdots, y^{(n-1)}\right), y(n)=f(x,y,y,,y(n1)), 其中 y ( n ) y^{(n)} y(n) 必须要含有,而 x , y , y ′ , ⋯   , y ( n − 1 ) x, y, y^{\prime}, \cdots, y^{(n-1)} x,y,y,,y(n1) 可以没有. 如 :
1) x 2 y ′ ′ − 4 x y ′ = 0 x^{2} y^{\prime \prime}-4 x y^{\prime}=0 \quad x2y4xy=0 二阶微分方程
2) x 3 ( y ′ ′ ′ ) 5 − 4 x ( y ′ ) 2 = 3 x 2 x^{3}\left(y^{\prime \prime \prime}\right)^{5}-4 x\left(y^{\prime}\right)^{2}=3 x^{2} \quad x3(y)54x(y)2=3x2 三阶微分方程
3) y ( 4 ) + x 2 ( sin ⁡ y ′ ′ ) 7 − 4 x y = 3 x 2 y^{(4)}+x^{2}\left(\sin y^{\prime \prime}\right)^{7}-4 x y=3 x^{2} \quad y(4)+x2(siny)74xy=3x2 四阶微分方程

  1. 微分方程的解
    (1) 微分方程的解 : 若把函数 y = φ ( x ) y=\varphi(x) y=φ(x) 代人微分方程成为恒等式,则称 y = φ ( x ) y=\varphi(x) y=φ(x) 为微分方程的解.
    (2) 微分方程的通解 ; 若微分方程的解中含有任意常数且任意常数的个数与微分方程的阶数相等,则称这样的解为微分方程的通解.
    (3) 初始条件:确定通解中任意常数的条件,称为初始条件.
    一阶微分方程的初始条件为: y ∣ x = x 0 = y 0 \left.y\right|_{x=x_{0}}=y_{0} yx=x0=y0

    二阶方程的初始条件为 : y ∣ x = x 0 = y 0 , y ′ ∣ x = x 0 = y 0 ′ \left.y\right|_{x=x_{0}}=y_{0},\left.\quad y^{\prime}\right|_{x=x_{0}}=y_{0}^{\prime} yx=x0=y0,yx=x0=y0

    (4) 微分方程的特解:确定了通解中任意常数的解,即满足初始条件的解,称为微分方程的特解.
    (5) 初值问题:求解微分方程满足初始条件的特解的问题,称为功值问题.
    (6) 积分曲线 : 微分方程的解 y = φ ( x ) y=\varphi(x) y=φ(x) 的图像,称为积分曲线.

第二节 一阶微分方程
  1. 可分离变量的微分方程
    定义 若一阶微分方程 d y   d x = f ( x , y ) \frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)  dxdy=f(x,y) 可化为形如 d y   d x = f ( x ) g ( y ) \frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) g(y)  dxdy=f(x)g(y) 的方程,则称为可分离变量的微分方程.

解法 g ( y ) ≠ 0 g(y) \neq 0 g(y)=0 , d y   d x = f ( x ) g ( y ) ⟺ d y g ( y ) = f ( x ) d x ⟷ ∫ d y g ( y ) = ∫ f ( x ) d x + C , \frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) g(y) \Longleftrightarrow \frac{\mathrm{d} y}{g(y)}=f(x) \mathrm{d} x \longleftrightarrow \int \frac{\mathrm{d} y}{g(y)}=\int f(x) \mathrm{d} x+C , dxdy=f(x)g(y)g(y)dy=f(x)dxg(y)dy=f(x)dx+C
g ( y ) = 0 g(y)=0 g(y)=0 时,解得 y = y 0 y=y_{0} y=y0 也为原方程的一个解.

注 (1) 由通解定义知: 求通解时,不需要讨论分母羊0 与分母=0;但求全部解时,必须讨论分母不为0 与分母=0.
(2) 分离变量法是解一阶微分方程的基本方法,其他方法都以其为基础.

  1. 齐次方程
    定义 若一阶微分方程 d y   d x = f ( x , y ) \frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)  dxdy=f(x,y) 可化为形如 d y   d x = φ ( y x ) \frac{\mathrm{d} y}{\mathrm{~d} x}=\varphi\left(\frac{y}{x}\right)  dxdy=φ(xy) 的方程,则称为齐次方程.

    解法 \quad 引人新的未知函数 u = y x , u=\frac{y}{x}, u=xy, y = u x , y ′ = u + x d u   d x y=u x, y^{\prime}=u+x \frac{\mathrm{d} u}{\mathrm{~d} x} y=ux,y=u+x dxdu
    代人原方程得 d u   d x = φ ( u ) − u x , \frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{\varphi(u)-u}{x},  dxdu=xφ(u)u, 可分离变量方程
    分离变量积分得 ∫ 1 ϕ ( u ) − u   d u = ∫ 1 x   d x + C \int \frac{1}{\phi(u)-u} \mathrm{~d} u=\int \frac{1}{x} \mathrm{~d} x+C ϕ(u)u1 du=x1 dx+C

  2. 一阶线性微分方程
    (1) 定义 形如 y ′ + P ( x ) y = 0 y^{\prime}+P(x) y=0 y+P(x)y=0 的一阶微分方程,称为一阶齐次线性微分方程. 通解公式 : y = C e − ∫ P ( x ) d x : y=C \mathrm{e}^{-\int P(x) \mathrm{d} x} :y=CeP(x)dx
    (2) 定义 形如 y ′ + P ( x ) y = Q ( x ) y^{\prime}+P(x) y=Q(x) y+P(x)y=Q(x) 的一阶微分方程,称为一阶非齐次线性微分方程. 通解公式: y = e − [ P ( x ) d x ( ∫ Q ( x ) e ∫ P ( x ) d x   d x + C ) y=\mathrm{e}^{-[P(x) \mathrm{d} x}\left(\int Q(x) \mathrm{e}^{\int P(x) d x} \mathrm{~d} x+C\right) y=e[P(x)dx(Q(x)eP(x)dx dx+C)
    注 (1) 利用通解公式求解一阶线性微分方程,必须把方程改写成标准形式后确定 P ( x ) P(x) P(x), Q ( x ) Q(x) Q(x)
    (2) d x   d y + P ( y ) x = Q ( y ) \frac{\mathrm{d} x}{\mathrm{~d} y}+P(y) x=Q(y)  dydx+P(y)x=Q(y) 可看作为关于 x x x 的一阶线性微分方程.

  3. 伯努利方程
    定义 \quad 形如 y ′ + P ( x ) y = Q ( x ) y n ( n ≠ 0 , 1 ) y^{\prime}+P(x) y=Q(x) y^{n}(n \neq 0,1) y+P(x)y=Q(x)yn(n=0,1) 的一阶微分方程, 称为伯努利方程.

    解法 \quad z = y 1 − n , z=y^{1-n}, z=y1n, z ′ = ( 1 − n ) y − n y ′ z^{\prime}=(1-n) y^{-n} y^{\prime} z=(1n)yny
    原方程化为 : z ′ + ( 1 − n ) P ( x ) z = ( 1 − n ) Q ( x ) : z^{\prime}+(1-n) P(x) z=(1-n) Q(x) \quad :z+(1n)P(x)z=(1n)Q(x) 一阶线性微分方程

    求解一阶线性方程的通解,再代回原变量即可.
    d x   d y + P ( y ) x = Q ( y ) x n ( n ≠ 0 , 1 ) \frac{\mathrm{d} x}{\mathrm{~d} y}+P(y) x=Q(y) x^{n}(n \neq 0,1)  dydx+P(y)x=Q(y)xn(n=0,1) 可看作为关于 x x x 的伯努利方程.

  4. 全微分方程
    定义 \quad 若存在可微函数 u ( x , y ) , u(x, y), u(x,y), 使得 d u ( x , y ) = P ( x , y ) d x + Q ( x , y ) d y , \mathrm{d} u(x, y)=P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y, du(x,y)=P(x,y)dx+Q(x,y)dy, 则称 P ( x , y ) d x P(x, y) \mathrm{d} x P(x,y)dx
    + Q ( x , y ) d y = 0 +Q(x, y) \mathrm{d} y=0 +Q(x,y)dy=0 为全微分方程.
    定理 P ( x , y ) d x + Q ( x , y ) d y = 0 \quad P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=0 P(x,y)dx+Q(x,y)dy=0 为全微分方程\longleftrightarrow ⇆ ∂ P ∂ y = ∂ Q ∂ x , \leftrightarrows \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, yP=xQ, 且方程的通解为
    u ( x , y ) = ∫ x 0 x P ( x , y ) d x + ∫ y 0 y Q ( x , y ) d y = C u(x, y)=\int_{x_{0}}^{x} P(x, y) \mathrm{d} x+\int_{y_{0}}^{y} Q(x, y) \mathrm{d} y=C u(x,y)=x0xP(x,y)dx+y0yQ(x,y)dy=C

  5. 用简单的变量代换解微分方程
    当微分方程中出现 f ( y x ) , f ( x y ) , f ( x y ) , f ( x ± y ) , f ( x 2 ± y 2 ) , f ( sin ⁡ x ) f\left(\frac{y}{x}\right), f\left(\frac{x}{y}\right), f(x y), f(x \pm y), f\left(x^{2} \pm y^{2}\right), f(\sin x) f(xy),f(yx),f(xy),f(x±y),f(x2±y2),f(sinx) 等形式时,常作变量代换 u = y x , u = x y , u = x y , u = x ± y , u = x 2 ± y 2 , u = sin ⁡ x u=\frac{y}{x}, u=\frac{x}{y}, u=x y, u=x \pm y, u=x^{2} \pm y^{2}, u=\sin x u=xy,u=yx,u=xy,u=x±y,u=x2±y2,u=sinx 等,化简方程为基本类型再求解。

第三节 二阶常系数线性微分方程

一、线性微分方程的解的性质与结构
二阶齐次线性方程 :
y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 y+P(x)y+Q(x)y=0
​ 二阶非齐次线性方程 :
y ′ ′ + P ( x ) y ′ + Q ( x ) y = f ( x ) y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x) y+P(x)y+Q(x)y=f(x)
定理 1 如果函数 y 1 ( x ) y_{1}(x) y1(x) y 2 ( x ) y_{2}(x) y2(x) 是方程 (1) 的两个解,那么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_{1} y_{1}(x)+C_{2} y_{2}(x) y=C1y1(x)+C2y2(x) 还是
方程(1)的解.

定理 2 y 1 ∗ ( x ) y_{1}^{*}(x) y1(x) y 2 ∗ ( x ) y_{2}^{*}(x) y2(x) 是方程 (2) 的?个解,则 y 1 ∗ ( x ) − y 2 ∗ ( x ) y_{1}^{*}(x)-y_{2}^{*}(x) y1(x)y2(x) 变为方程 (1) 的解.
定理 3 如果函数 y 1 ( x ) y_{1}(x) y1(x) y 2 ( x ) y_{2}(x) y2(x) 是方程(1)的两个线性无关的特解, 即 y 1 ( x ) y 2 ( x ) ≠ \frac{y_{1}(x)}{y_{2}(x)} \neq y2(x)y1(x)= 常数,那 么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_{1} y_{1}(x)+C_{2} y_{2}(x) y=C1y1(x)+C2y2(x) 貝方程 (1) 的通解.

定理 4 y ∗ ( x ) y^{*}(x) y(x) 是方程(2)的一个特解 , C 1 y 1 ( x ) + C 2 y 2 ( x ) , C_{1} y_{1}(x)+C_{2} y_{2}(x) ,C1y1(x)+C2y2(x) 是方程(2) 对应的齐次方程(1) 的通解,那么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) + y ∗ ( x ) y=C_{1} y_{1}(x)+C_{2} y_{2}(x)+y^{*}(x) y=C1y1(x)+C2y2(x)+y(x) 是方程(2)的通解.

​ 注 \quad 如何求 y 1 ( x ) , y 2 ( x ) , y ∗ ( x ) ? y_{1}(x), y_{2}(x), y^{*}(x) ? y1(x),y2(x),y(x)?

定理 5 设方程 (2) 的右端 f ( x ) f(x) f(x) 是几个函数之和,如
y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 1 ( x ) + f 2 ( x ) y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f_{1}(x)+f_{2}(x) y+P(x)y+Q(x)y=f1(x)+f2(x)
y 1 ∗ ( x ) y_{1}^{*}(x) y1(x) y 2 ∗ ( x ) y_{2}^{*}(x) y2(x) 分别是方程
y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 1 ( x ) y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 2 ( x ) \begin{array}{l} y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f_{1}(x) \\ y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f_{2}(x) \end{array} y+P(x)y+Q(x)y=f1(x)y+P(x)y+Q(x)y=f2(x)
​ 的特解,那么 y 1 ∗ ( x ) + y 2 ∗ ( x ) y_{1}^{*}(x)+y_{2}^{*}(x) y1(x)+y2(x) 就是方程 (3) 的特解.

二、二阶常系数齐次线性微分方程
二阶常系数齐次线性方程 :
y ′ ′ + p y ′ + q y = 0 y^{\prime \prime}+p y^{\prime}+q y=0 y+py+qy=0
​ 特征方程为 : r 2 + p r + q = 0 ⟹ : r^{2}+p r+q=0 \Longrightarrow :r2+pr+q=0 特征根为 : r 1 , r 2 : r_{1}, r_{2} :r1,r2
​ (1) 当两个不相等的实根: r 1 , r 2 r_{1}, r_{2} r1,r2 时,通解为:
y = C 1 e r 1 x + C 2 e r 2 x y=C_{1} \mathrm{e}^{r_{1} x}+C_{2} \mathrm{e}^{r_{2} x} y=C1er1x+C2er2x
​ (2) 当两个相等的实根: r 1 = r 2 r_{1}=r_{2} r1=r2 时,通解为
y = ( C 1 + C 2 x ) e r 1 x y=\left(C_{1}+C_{2} x\right) \mathrm{e}^{r_{1} x} y=(C1+C2x)er1x
​ (3) 当一对共轭复根 : r 1.2 = α ± β i r_{1.2}=\alpha \pm \beta \mathrm{i} r1.2=α±βi 时,通解为 :
y = e a x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y=\mathrm{e}^{a x}\left(C_{1} \cos \beta x+C_{2} \sin \beta x\right) y=eax(C1cosβx+C2sinβx)
​ 注 \quad 高阶常系数线性方程具有类似的解法.

三、二阶常系数非齐次线性微分方程
二阶常系数非齐次方程的通解:
y ′ ′ + p y ′ + q y = f ( x ) y^{\prime \prime}+p y^{\prime}+q y=f(x) y+py+qy=f(x)
(1) 求出对应的齐次线性方程 y ′ ′ + p y ′ + q y = 0 y^{\prime \prime}+p y^{\prime}+q y=0 y+py+qy=0 的通解 :
Y = C 1 y 1 ( x ) + C 2 y 2 ( x ) Y=C_{1} y_{1}(x)+C_{2} y_{2}(x) Y=C1y1(x)+C2y2(x)
(2) 求出 y ′ ′ + p y ′ + q y = f ( x ) y^{\prime \prime}+p y^{\prime}+q y=f(x) y+py+qy=f(x) 的一个特解 : y ∗ : y^{*} :y
y ′ ′ + p y ′ + q y = f ( x ) y^{\prime \prime}+p y^{\prime}+q y=f(x) y+py+qy=f(x) 的通解为 :
y = C 1 y 1 ( x ) + C 2 y 2 ( x ) + y ∗ y=C_{1} y_{1}(x)+C_{2} y_{2}(x)+y^{*} y=C1y1(x)+C2y2(x)+y
下面介绍求特解 y ∗ y^{*} y 的待定系数法:

(1) 自由项 f ( x ) = P m ( x ) e λ x f(x)=P_{m}(x) \mathrm{e}^{\lambda x} f(x)=Pm(x)eλx
设特解形式为 y ∗ ( x ) = x k Q m ( x ) e λ x , y^{*}(x)=x^{k} Q_{m}(x) \mathrm{e}^{\lambda x}, y(x)=xkQm(x)eλx, 其中 k k k 是根据 λ \lambda λ r 2 + p r + q = 0 r^{2}+p r+q=0 r2+pr+q=0 的儿重根而取 0,1 ,
2 , Q m ( x ) 2, Q_{m}(x) 2,Qm(x) m m m 次多项式,系数待定.
(1) 当 λ ≠ r 1 , λ ≠ r 2 \lambda \neq r_{1}, \lambda \neq r_{2} λ=r1,λ=r2 时,设特解为
y ∗ = Q m ( x ) e λ x y^{*}=Q_{m}(x) \mathrm{e}^{\lambda x} y=Qm(x)eλx
​ (2) 当 λ = r 1 ≠ r 2 ( \lambda=r_{1} \neq r_{2}\left(\right. λ=r1=r2( λ = r 2 ≠ r 1 ) \left.\lambda=r_{2} \neq r_{1}\right) λ=r2=r1) 吋,设特解为 :
y ∗ = x Q m ( x ) e e x y^{*}=x Q_{m}(x) \mathrm{e}^{\mathrm{e} x} y=xQm(x)eex
​ (3) 当 λ = r 1 = r 2 \lambda=r_{1}=r_{2} λ=r1=r2 时,设特解为
y ∗ = x 2 Q m ( x ) e λ x y^{*}=x^{2} Q_{m}(x) \mathrm{e}^{\lambda x} y=x2Qm(x)eλx
(2) 自由项 f ( x ) = e λ x [ P l ( x ) cos ⁡ w x + P n ( x ) sin ⁡ w x ] f(x)=\mathrm{e}^{\lambda x}\left[P_{l}(x) \cos w x+P_{n}(x) \sin w x\right] f(x)=eλx[Pl(x)coswx+Pn(x)sinwx]

​ 设特解形式为 y ∗ ( x ) = x k e λ x [ R m ( x ) cos ⁡ w x + S m ( x ) sin ⁡ w x ] , y^{*}(x)=x^{k} \mathrm{e}^{\lambda x}\left[R_{m}(x) \cos w x+S_{m}(x) \sin w x\right], y(x)=xkeλx[Rm(x)coswx+Sm(x)sinwx], 其中 k k k 是根据 λ + ω i \lambda+\omega i λ+ωi 是否为 r 2 + p r + q = 0 r^{2}+p r+q=0 r2+pr+q=0 的根兩坟 0 或 1 , R m 1, R_{m} 1,Rm S m ( x ) S_{m}(x) Sm(x) m m m 次多项式, m = max ⁡ { l , n } , m=\max \{l, n\}, m=max{l,n}, 系数待定.

第四节 可降阶方程与欧拉方程

一、可降阶的二阶方程

  1. y ′ ′ = f ( x , y ′ ) y^{\prime \prime}=f\left(x, y^{\prime}\right) y=f(x,y)
    特征 不含未知函数 y y y
    解法 \quad y ′ = p , y^{\prime}=p, y=p, y ′ ′ = d p   d x = p ′ y^{\prime \prime}=\frac{\mathrm{d} p}{\mathrm{~d} x}=p^{\prime} y= dxdp=p
    原方程化为 : p ′ = f ( x , p ) : p^{\prime}=f(x, p) \quad :p=f(x,p) 关于 x 、 p x 、 p xp 的一阶微分方程 解得通解为 : p = φ ( x , C 1 ) , : p=\varphi\left(x, C_{1}\right), :p=φ(x,C1), d y   d x = φ ( x , C 1 ) \frac{\mathrm{d} y}{\mathrm{~d} x}=\varphi\left(x, C_{1}\right)  dxdy=φ(x,C1)
    两端积分得:原方程通解为 y = ∫ φ ( x , C 1 ) d x + C 2 y=\int \varphi\left(x, C_{1}\right) \mathrm{d} x+C_{2} y=φ(x,C1)dx+C2

  2. y ′ ′ = f ( y , y ′ ) y^{\prime \prime}=f\left(y, y^{\prime}\right) y=f(y,y)
    特征 不含自变量 x x x
    解法 \quad y ′ = p , y^{\prime}=p, y=p, y ′ ′ = d p   d x = d p   d y d y   d x = p d p   d y y^{\prime \prime}=\frac{\mathrm{d} p}{\mathrm{~d} x}=\frac{\mathrm{d} p}{\mathrm{~d} y} \frac{\mathrm{d} y}{\mathrm{~d} x}=p \frac{\mathrm{d} p}{\mathrm{~d} y} y= dxdp= dydp dxdy=p dydp
    原方程化为 : p d p   d y = f ( y , p ) : p \frac{\mathrm{d} p}{\mathrm{~d} y}=f(y, p) \quad :p dydp=f(y,p) 关于 y , p y, p y,p 的一阶微分方程

解得通解为 : p = φ ( y , C 1 ) , : p=\varphi\left(y, C_{1}\right), :p=φ(y,C1), d y   d x = φ ( y , C 1 ) \frac{\mathrm{d} y}{\mathrm{~d} x}=\varphi\left(y, C_{1}\right)  dxdy=φ(y,C1)
分离变量并积分得 : 原方程通解为 ∫ d y φ ( y , C 1 ) = x + C 2 \int \frac{\mathrm{d} y}{\varphi\left(y, C_{1}\right)}=x+C_{2} φ(y,C1)dy=x+C2

二、欧拉方程
二阶欧拉方程 x 2 y ′ ′ + a x y ′ + b y = f ( x ) x^{2} y^{\prime \prime}+a x y^{\prime}+b y=f(x) x2y+axy+by=f(x)
解法 \quad 通过变量代换 x = e t x=\mathrm{e}^{t} x=et,把欧拉方程转化为常系数线性微分方程;

x = e t x=\mathrm{e}^{t} x=et,把 y y y 看作 t t t 的函数,则: x y ′ = d y   d t ; x 2 y ′ ′ = d 2 y   d t 2 − d y   d t x y^{\prime}=\frac{\mathrm{d} y}{\mathrm{~d} t} ; x^{2} y^{\prime \prime}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} t} xy= dtdy;x2y= dt2d2y dtdy 代入方程得常系数线性微分方程,将 x = e t x=\mathrm{e}^{t} x=et 回代.

第八章 向量代数与空间解析几何

第一节 向量的概念与运算及其关系

一、向量的概念

  1. 向量的定义 既有火小又有方向的量称为向量,记为 a , b , c . a, b, c . a,b,c. 起点为 A,终点为 B B B 的向量记为?B.
  2. 向量的坐标表示式 在直角坐标系中,向量 a a a 的坐标表示式为 a = a x i + a y j + a z k = { a x , a y , a z } a=a_{x} i+a_{y} j+a_{z} k=\left\{a_{x}, a_{y}, a_{z}\right\} a=axi+ayj+azk={ax,ay,az} M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M_{1}\left(x_{1}, y_{1}, z_{1}\right), M_{2}\left(x_{2}, y_{2}, z_{2}\right), M1(x1,y1,z1),M2(x2,y2,z2), M 1 ‾ M 2 → \overline{M_{1}} \overrightarrow{M_{2}} M1M2 的坐标表达式为
    M 1 M 2 ‾ = ( x 2 − x 1 ) i + ( y 2 − y 1 ) j + ( z 2 − z 1 ) k = { ( x 2 − x 1 ) , ( y 2 − y 1 ) , ( z 2 − z 1 ) } \overline{M_{1} M_{2}}=\left(x_{2}-x_{1}\right) \boldsymbol{i}+\left(y_{2}-y_{1}\right) \boldsymbol{j}+\left(z_{2}-z_{1}\right) \boldsymbol{k}=\left\{\left(x_{2}-x_{1}\right),\left(y_{2}-y_{1}\right),\left(z_{2}-z_{1}\right)\right\} M1M2=(x2x1)i+(y2y1)j+(z2z1)k={(x2x1),(y2y1),(z2z1)}
  3. 向量的模 向量的长度叫做向量的模. 向量下 1 M ⃗ 2 , a _{1} \vec{M}_{2}, a 1M 2,a 的模依次记作 ∣ M ˉ 1 M 2 ∣ , ∣ a ∣ . \left|\bar{M}_{1} M_{2}\right|,|a| . Mˉ1M2,a.
    a = { a x , a y , a z } , \boldsymbol{a}=\left\{a_{x}, a_{y}, a_{z}\right\}, a={ax,ay,az}, ∣ a ∣ = a x 2 + a y 2 + a z 2 |\boldsymbol{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}} a=ax2+ay2+az2
  4. 方向角
    向量与坐标轴正向的夹角 α , β , γ \alpha, \beta, \gamma α,β,γ 称为向量的方向角. 0 ⩽ α , β , γ ⩽ π . 0 \leqslant \alpha, \beta, \gamma \leqslant \pi . 0α,β,γπ.
    方向角的余弦 cos ⁡ α , cos ⁡ β , cos ⁡ γ \cos \alpha, \cos \beta, \cos \gamma cosα,cosβ,cosγ 称为向量的方向余弦.

cos ⁡ α = a x a x 2 + a y 2 + a z 2 , cos ⁡ β = a y a x 2 + a y 2 + a z 2 , cos ⁡ γ = a z a x 2 + a y 2 + a z 2 cos ⁡ 2 α + cos ⁡ 2 β + cos ⁡ 2 γ = 1 \begin{array}{c} \cos \alpha=\frac{a_{x}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}, \quad \cos \beta=\frac{a_{y}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}, \quad \cos \gamma=\frac{a_{z}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}} \\ \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \end{array} cosα=ax2+ay2+az2 ax,cosβ=ax2+ay2+az2 ay,cosγ=ax2+ay2+az2 azcos2α+cos2β+cos2γ=1

  1. 单位向量
    模等于 1 的向量称为单位向量, 即 ∣ a ∣ = 1 |a|=1 a=1.
    与非零向量 a a a 同方向的单位向量 : a ∘ = 1 ∣ a ∣ { a x , a y , a z } = { cos ⁡ α , cos ⁡ β , cos ⁡ γ } : a^{\circ}=\frac{1}{|a|}\left\{a_{x}, a_{y}, a_{z}\right\}=\{\cos \alpha, \cos \beta, \cos \gamma\} :a=a1{ax,ay,az}={cosα,cosβ,cosγ}

二、向量的运算

  1. 向量的线性运算
    a = { a x , a y , a z } , b = { b x , b y , b z } , \boldsymbol{a}=\left\{a_{x}, a_{y}, a_{z}\right\}, \boldsymbol{b}=\left\{b_{x}, b_{y}, b_{z}\right\}, a={ax,ay,az},b={bx,by,bz},
    (1) a + b = { a x + b x , a y + b y , a z + b z } \boldsymbol{a}+\boldsymbol{b}=\left\{a_{x}+b_{x}, a_{y}+b_{y}, a_{z}+b_{z}\right\} a+b={ax+bx,ay+by,az+bz}
    (2) λ a = { λ a x , λ a y , λ a z } \lambda a=\left\{\lambda a_{x}, \lambda a_{y}, \lambda a_{z}\right\} λa={λax,λay,λaz}

  2. 向量的数量积
    (1) 定义 a ⋅ b = ∣ a ∣ ⋅ ∣ b ∣ ⋅ cos ⁡ θ ( θ \quad a \cdot b=|a| \cdot|b| \cdot \cos \theta(\theta ab=abcosθ(θ a a a b b b 的夹角, 且 0 ⩽ θ ⩽ π ) 0 \leqslant \theta \leqslant \pi) 0θπ)
    (2) 坐标表示式 : 设 a = { a x , a y , a z } , b = { b x , b y , b z } , a=\left\{a_{x}, a_{y}, a_{z}\right\}, b=\left\{b_{x}, b_{y}, b_{z}\right\}, a={ax,ay,az},b={bx,by,bz}, a ⋅ b = a x b x + a y b y + a z b z a \cdot b=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} ab=axbx+ayby+azbz
    (3) 两向量的头角 : cos ⁡ θ = a ⋅ b ∣ a ∣ ⋅ b ∣ = a x b x + a y b y + a z b z a x 2 + a y 2 + a z 2 ⋅ b x 2 + b y 2 + b z 2 : \cos \theta=\frac{a \cdot b}{|a| \cdot b \mid}=\frac{a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}} \cdot \sqrt{b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}} :cosθ=abab=ax2+ay2+az2 bx2+by2+bz2 axbx+ayby+azbz

  3. 向量的向量积
    (1) 定义 a × b \boldsymbol{a} \times \boldsymbol{b} a×b 为一个向量:
    大小: ∣ a ∣ ⋅ ∣ b ∣ ⋅ sin ⁡ θ ( θ |\boldsymbol{a}| \cdot|\boldsymbol{b}| \cdot \sin \theta(\theta absinθ(θ a \boldsymbol{a} a b \boldsymbol{b} b 的夹角)
    方向 : a ⊥ a × b , b ⊥ a × b : \boldsymbol{a} \perp \boldsymbol{a} \times \boldsymbol{b}, \boldsymbol{b} \perp \boldsymbol{a} \times \boldsymbol{b} :aa×b,ba×b a , b , a × b \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{a} \times \boldsymbol{b} a,b,a×b 构成右手法则.
    \quad 要找既垂直于 a a a 叉弄直于 b \boldsymbol{b} b 的向量, 可取为 n = a × b \boldsymbol{n}=\boldsymbol{a} \times \boldsymbol{b} n=a×b.
    (2) 运算律 : a × b = − b × a \boldsymbol{a} \times \boldsymbol{b}=-\boldsymbol{b} \times \boldsymbol{a} a×b=b×a (不符合交换律)
    (3) ∣ a × b ∣ |a \times b| a×b 的几何意义: 以 a , b a, b a,b 为邻进的平行四边形的面积.
    (4) 向量积的坐标表示式: 设 a = { a x , a y , a z } , b = { b x , b y , b z } , a=\left\{a_{x}, a_{y}, a_{z}\right\}, b=\left\{b_{x}, b_{y}, b_{z}\right\}, a={ax,ay,az},b={bx,by,bz}, a × b = ∣ i j k a x a y a z b x b y b z ∣ \boldsymbol{a} \times \boldsymbol{b}=\left|\begin{array}{ccc} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{array}\right| a×b=iaxbxjaybykazbz

  4. 向量的混合积
    (1) 定义 设 a , b , c a, b, c a,b,c 为三个向量,称 ( a × b ) (a \times b) (a×b) c c c a , b , c a, b, c a,b,c 的混合积,记为 [ a , b , c ] . [a, b, c] . [a,b,c].
    \quad 混合积是一个数.
    (2) 几何意义 : ∣ [ a , b , c ] ∣ :|[\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}]| :[a,b,c] 等于以向量 a , b , c \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} a,b,c 为棱的平行六面体的体积.
    (3) 坐标表达式 设 a = { a x , a y , a z } , b = { b x , b y , b z } , c = { c c , c y , c z } , a=\left\{a_{x}, a_{y}, a_{z}\right\}, b=\left\{b_{x}, b_{y}, b_{z}\right\}, c=\left\{c_{c}, c_{y}, c_{z}\right\}, a={ax,ay,az},b={bx,by,bz},c={cc,cy,cz}, ( a × b ) ⋅ c = ∣ a x a y a z b x b y b z c x c y c z ∣ (\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}=\left|\begin{array}{lll}a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z}\end{array}\right| (a×b)c=axbxcxaybycyazbzcz

  5. 向量的关系
    (1) 平行 : a / / b ⟷ a x b x = a y b y = a z b z : \boldsymbol{a} / / \boldsymbol{b} \longleftrightarrow \frac{a_{x}}{b_{x}}=\frac{a_{y}}{b_{y}}=\frac{a_{z}}{b_{z}} :a//bbxax=byay=bzaz
    (2) 垂直: a ⊥ b ⟷ a x b x + a y b y + a z b z = 0 \boldsymbol{a} \perp \boldsymbol{b} \longleftrightarrow a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=0 abaxbx+ayby+azbz=0
    (3) 三个向量 a , b , c \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} a,b,c 共面 ⟺ ( a × b ) ⋅ c = ∣ a x a y a z b x b y b z c x c y c z ∣ = 0 \Longleftrightarrow (\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}=\left|\begin{array}{lll}a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z}\end{array}\right|=0 (a×b)c=axbxcxaybycyazbzcz=0

    三向量 a , b , c a, b, c a,b,c 共面 ⟺ \Longleftrightarrow 存在不全为零的数 λ 1 , λ 2 , λ 3 , \lambda_{1}, \lambda_{2}, \lambda_{3}, λ1,λ2,λ3, 使 λ 1 a + λ 2 b + λ 3 c = 0. \lambda_{1} a+\lambda_{2} b+\lambda_{3} c=0 . λ1a+λ2b+λ3c=0.

第二节 平面方程与直线方程及其位置关系

一、平面方程

  1. 点法式方程 : 过点 M 0 ( x 0 , y 0 , z 0 ) , M_{0}\left(x_{0}, y_{0}, z_{0}\right), M0(x0,y0,z0), 且法向量为 n = { A , B , C } n=\{A, B, C\} n={A,B,C} 的平面方程为
    A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0 A(xx0)+B(yy0)+C(zz0)=0
    法向量:垂直于平面的非零向量 n = { A , B , C } . \boldsymbol{n}=\{A, B, C\} . n={A,B,C}.

  2. 截距式: x a + y b + z c = 1 , \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1, ax+by+cz=1, 其中 a , b , c a, b, c a,b,c 分别为平面在 x , y , z x, y, z x,y,z 轴上的截距,且均不为零.

  3. 一般方程 : A x + B y + C z + D = 0 : A x+B y+C z+D=0 :Ax+By+Cz+D=0

  4. 点到平面的距离:空间一点 P 0 ( x 0 , y 0 , z 0 ) P_{0}\left(x_{0}, y_{0}, z_{0}\right) P0(x0,y0,z0) 到平面 A x + B y + C z + D = 0 A x+B y+C z+D=0 Ax+By+Cz+D=0 的距离为
    d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 ⟶  公式  d=\frac{\left|A x_{0}+B y_{0}+C z_{0}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} \longrightarrow \text { 公式 } d=A2+B2+C2 Ax0+By0+Cz0+D 公式 

  5. 两平面的位置关系 设 π 1 : A 1 x + B 1 y + C 1 z + D 1 = 0 , π 2 : A 2 x + B 2 y + C 2 z + D 2 = 0 , \pi_{1}: A_{1} x+B_{1} y+C_{1} z+D_{1}=0, \pi_{2}: A_{2} x+B_{2} y+C_{2} z+D_{2}=0, π1:A1x+B1y+C1z+D1=0,π2:A2x+B2y+C2z+D2=0, 其中系数 A 1 , B 1 , C 1 A_{1}, B_{1}, C_{1} A1,B1,C1
    A 2 , B 2 , C 2 A_{2}, B_{2}, C_{2} A2,B2,C2 分别为两平面法向量 n 1 , n 2 n_{1}, n_{2} n1,n2 的坐标, 即 n 1 = { A 1 , B 1 , C 1 } , n 2 = { A 2 , B 2 , C 2 } . n_{1}=\left\{A_{1}, B_{1}, C_{1}\right\}, \boldsymbol{n}_{2}=\left\{A_{2}, B_{2}, C_{2}\right\} . n1={A1,B1,C1},n2={A2,B2,C2}.
    (1) 两平面的夹角(锐夹角) : cos ⁡ θ = cos ⁡ ( n 1 , n 2 ^ ) = ∣ n 1 ⋅ n 2 ∣ ∣ n 1 ∣ ∣ n 2 ∣ = ∣ A 1 A 2 + B 1 B 2 + C 1 C 2 ∣ A 1 2 + B 1 2 + C 1 2 A 2 2 + B 2 2 + C 2 2 : \cos \theta=\cos \left(\widehat{n_{1}, \boldsymbol{n}_{2}}\right)=\frac{\left|\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}\right|}{\left|\boldsymbol{n}_{1}\right|\left|\boldsymbol{n}_{2}\right|}=\frac{\left|A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}\right|}{\sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}} \sqrt{A_{2}^{2}+B_{2}^{2}+C_{2}^{2}}} :cosθ=cos(n1,n2 )=n1n2n1n2=A12+B12+C12 A22+B22+C22 A1A2+B1B2+C1C2
    (2) 两平面平行、重合、垂直的充要条件 :

​ (1) π 1 / / π 2 ⟺ n 1 / / n 2 ⟺ A 1 A 2 = B 1 B 2 = C 1 C 2 \pi_{1} / / \pi_{2} \Longleftrightarrow \boldsymbol{n}_{1} / / \boldsymbol{n}_{2} \Longleftrightarrow \frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}}=\frac{C_{1}}{C_{2}} π1//π2n1//n2A2A1=B2B1=C2C1
​ (2) π 1 \pi_{1} π1 π 2 \pi_{2} π2 重合 ⟺ A 1 A 2 = B 1 B 2 = C 1 C 2 = D 1 D 2 \Longleftrightarrow \frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}}=\frac{C_{1}}{C_{2}}=\frac{D_{1}}{D_{2}} A2A1=B2B1=C2C1=D2D1
​ (3) π 1 ⊥ π 2 ⟺ n 1 ⊥ n 2 ⟺ A 1 A 2 + B 1 B 2 + C 1 C 2 = 0 \pi_{1} \perp \pi_{2} \Longleftrightarrow \boldsymbol{n}_{1} \perp \boldsymbol{n}_{2} \Longleftrightarrow A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}=0 π1π2n1n2A1A2+B1B2+C1C2=0

二、直线方程

  1. 对称式方程 : x − x 0 m = y − y 0 n = z − z 0 p : \frac{x-x_{0}}{m}=\frac{y-y_{0}}{n}=\frac{z-z_{0}}{p} :mxx0=nyy0=pzz0
    注 (1) 方向向量: 与直线乎行的非零向量 S = { m , n , p } S=\{m, n, p\} S={m,n,p}
    (2) 由对称式方程如何求直线的方向向量和直线上的已知点?
  2. 参数方程 : { x = x 0 + m t y = y 0 + n t ( t ∈ R ) z = z 0 + p t :\left\{\begin{array}{l}x=x_{0}+m t \\ y=y_{0}+n t(t \in \mathbf{R}) \\ z=z_{0}+p t\end{array}\right. :x=x0+mty=y0+nt(tR)z=z0+pt
  3. 一般方程 : { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 :\left\{\begin{array}{l}A_{1} x+B_{1} y+C_{1} z+D_{1}=0 \\ A_{2} x+B_{2} y+C_{2} z+D_{2}=0\end{array}\right. :{A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0 (直线为两个不平行平面的交线)
    \quad 在一般式中,由手两平面所交直线同时垂直于两平面的法向量,故直线的方向向量可取为 S = { A 1 , B 1 , C 1 } × { A 2 , B 2 , C 2 } \boldsymbol{S}=\left\{A_{1}, B_{1}, C_{1}\right\} \times\left\{A_{2}, B_{2}, C_{2}\right\} S={A1,B1,C1}×{A2,B2,C2}

三、位置关系

  1. 直线与直线的位置关系
    (1) 直线与直线的夹角:两直线的方向向量的锐夹角称为这两条直线的夹角.
    (2) 设两条直线的方向向量为 S 1 = { m 1 , n 1 , p 1 } , S 2 = { m 2 , n 2 , p 2 } , \boldsymbol{S}_{1}=\left\{m_{1}, n_{1}, p_{1}\right\}, \boldsymbol{S}_{2}=\left\{m_{2}, n_{2}, p_{2}\right\}, S1={m1,n1,p1},S2={m2,n2,p2},
    cos ⁡ φ = ∣ m 1 m 2 + n 1 n 2 + p 1 p 2 ∣ m 1 2 + n 1 2 + p 1 2 m 2 2 + n 2 2 + p 2 2 \cos \varphi=\frac{\left|m_{1} m_{2}+n_{1} n_{2}+p_{1} p_{2}\right|}{\sqrt{m_{1}^{2}+n_{1}^{2}+p_{1}^{2}} \sqrt{m_{2}^{2}+n_{2}^{2}+p_{2}^{2}}} cosφ=m12+n12+p12 m22+n22+p22 m1m2+n1n2+p1p2
    ​ (3)直线平行、垂直及相交的判定
    ​ (1) 两直线平行 ⟷ S / / S 2 \longleftrightarrow S / / S_{2} S//S2
    ​ (2) 两直线垂直 ⟺ S 1 ⊥ S 2 \Longleftrightarrow S_{1} \perp \boldsymbol{S}_{2} S1S2

  2. 直线与平面的位置关系
    (1) 直线与平面的夹角 : 直线和它在平面上投影直线的夹角 φ ( 0 ⩽ φ < π 2 ) \varphi\left(0 \leqslant \varphi<\frac{\pi}{2}\right) φ(0φ<2π).
    (2) 设直线的方向向量是 S = { m , n , p } \boldsymbol{S}=\{m, n, p\} S={m,n,p},平面的法向量 n = { A , B , C } \boldsymbol{n}=\{A, B, C\} n={A,B,C},则

sin ⁡ φ = ∣ A m + B n + C p A 2 + B 2 + C 2 m 2 + n 2 + p 2 ∣ \sin \varphi=\left|\frac{A m+B n+C p}{\sqrt{A^{2}+B^{2}+C^{2}} \sqrt{m^{2}+n^{2}+p^{2}}}\right| sinφ=A2+B2+C2 m2+n2+p2 Am+Bn+Cp

​ (3) 直线与平面平行或垂直的判定
​ (1) 直线与平面平行呂 A m + B n + C p = 0 A m+B n+C p=0 Am+Bn+Cp=0
​ (2) 直线与平面垂直早 A m = B n = C p \frac{A}{m}=\frac{B}{n}=\frac{C}{p} mA=nB=pC

四、平面束方程
设直线 L L L 的方程为 { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 , \left\{\begin{array}{l}A_{1} x+B_{1} y+C_{1} z+D_{1}=0 \\ A_{2} x+B_{2} y+C_{2} z+D_{2}=0\end{array},\right. {A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0, 则过 L L L 的所有平面的方程可表示为 λ ( A 1 x + \lambda\left(A_{1} x+\right. λ(A1x+
B 1 y + C 1 z + D 1 ) + μ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 , \left.B_{1} y+C_{1} z+D_{1}\right)+\mu\left(A_{2} x+B_{2} y+C_{2} z+D_{2}\right)=0, B1y+C1z+D1)+μ(A2x+B2y+C2z+D2)=0, 其中 λ , μ \lambda, \mu λ,μ 为不同时为 0 的常数,这就是过直线 L L L 的平面束方程. 为简便起见,常将平面束方程表示为 A 1 x + B 1 y + C 1 z + D 1 + λ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 ( A_{1} x+B_{1} y+C_{1} z+D_{1}+\lambda\left(A_{2} x+B_{2} y+C_{2} z+D_{2}\right)=0\left(\right. A1x+B1y+C1z+D1+λ(A2x+B2y+C2z+D2)=0( 不含平面 A 2 x + B 2 y + C 2 z + D 2 = 0 ) \left.A_{2} x+B_{2} y+C_{2} z+D_{2}=0\right) A2x+B2y+C2z+D2=0) λ ( A 1 x + B 1 y + C 1 z + D 1 ) + A 2 x + B 2 y + C 2 z + D 2 = 0 \lambda\left(A_{1} x+B_{1} y+C_{1} z+D_{1}\right)+A_{2} x+B_{2} y+C_{2} z+D_{2}=0 λ(A1x+B1y+C1z+D1)+A2x+B2y+C2z+D2=0 (不含平面 A 1 x + B 1 y + C 1 z + D 1. = 0 ) \left.A_{1} x+B_{1} y+C_{1} z+D_{1 .}=0\right) A1x+B1y+C1z+D1.=0)

第三节 曲面方程与空问曲线方程

一、曲 面的方程

  1. 曲面的一般方程为 F ( x , y , z ) = 0 F(x, y, z)=0 F(x,y,z)=0 - -一已元方程.

  2. 常见的曲確
    (1) 球面: ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = R 2 \left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=R^{2} (xx0)2+(yy0)2+(zz0)2=R2
    (2) 柱面: 平行于定直线 l l l 并沿曲线 C C C 移动的直线所形成蛇曲面称为柱面,定曲线称为柱面的准线定直线称为柱面的母线.

​ 注 \quad 方程 F ( x , y ) = 0 , H ( y , z ) = 0 , G ( x , z ) = 0 F(x, y)=0, H(y, z)=0, G(x, z)=0 F(x,y)=0,H(y,z)=0,G(x,z)=0 均表示柱面.
(3) 旋转曲面: 平面上的曲线 C C C 绕该平面上的一条直线 l l l 旋转所成的曲面称为旋转曲面. 曲线 C : { f ( y , z ) = 0 x = 0 C:\left\{\begin{array}{l}f(y, z)=0 \\ x=0\end{array}\right. C:{f(y,z)=0x=0 z z z 轴旋转一周得旋转曲面方程为 f ( ± x 2 + y 2 , z ) = 0 f\left(\pm \sqrt{x^{2}+y^{2}}, z\right)=0 f(±x2+y2 ,z)=0
同理 : 曲线 C : { f ( y , z ) = 0 x = 0 C:\left\{\begin{array}{l}f(y, z)=0 \\ x=0\end{array}\right. C:{f(y,z)=0x=0 y y y 轴旋转所成的旋转曲面方程为 f ( y , ± x 2 + z 2 ) = 0 f\left(y, \pm \sqrt{x^{2}+z^{2}}\right)=0 f(y,±x2+z2 )=0
(4) 二次曲面(锥面、拋物面、粗球面)
三元二次方程所表示的曲面称为二次曲面.常见的二次曲面如下:
​ (a) 粗球面 : x 2 a 2 + y 2 b 2 + z 2 c 2 = 0 : \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=0 :a2x2+b2y2+c2z2=0

​ (b) 抛物面:1)椭圆抛物面 x 2 a 2 + y 2 b 2 = 2 p z \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2 p z a2x2+b2y2=2pz 2)双曲抛物 ( ( ( 马鞍面 ) x 2 a 2 − y 2 b 2 = 2 p z ) \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=2 p z )a2x2b2y2=2pz

​ © 雉面 : x 2 a 2 + y 2 b 2 − z 2 c 2 = 0 : \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0 :a2x2+b2y2c2z2=0
​ (d) 单叶双曲面 x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 a2x2+b2y2c2z2=1 双叶双曲面 x 2 a 2 + y 2 b 2 − z 2 c 2 = − 1 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=-1 a2x2+b2y2c2z2=1

二、空间曲线的方程

  1. 一般方程 : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 :\left\{\begin{array}{l}F(x, y, z)=0 \\ G(x, y, z)=0\end{array}\right. :{F(x,y,z)=0G(x,y,z)=0
    注:一般方程在几何上表示两个曲面的交线,即空间曲线既在曲面 F ( x , y , z ) = 0 F(x, y, z)=0 F(x,y,z)=0上又在曲面 G ( x , y , z ) = 0 G(x, y, z)=0 G(x,y,z)=0
  2. 参数方程 { x = x ( t ) y = y ( t ) , t  为参数  z = z ( t ) \left\{\begin{array}{l}x=x(t) \\ y=y(t), t \text { 为参数 } \\ z=z(t)\end{array}\right. x=x(t)y=y(t),t 为参数 z=z(t)
  3. 空间曲线在坐标面上的投影曲线的方程
    设空间曲线 L L L 的方程 { F ( x , y , z ) = 0 G ( x , y , z ) = 0 , \left\{\begin{array}{l}F(x, y, z)=0 \\ G(x, y, z)=0\end{array},\right. {F(x,y,z)=0G(x,y,z)=0, z z z 得关于 x O y x O y xOy 平面的投影柱面 H ( x , y ) = 0 , H(x, y)=0, H(x,y)=0, 则 空间曲线 L L L x O y x O y xOy 平面的投影曲线 { H ( x , y ) = 0 z = 0 . \left\{\begin{array}{l}H(x, y)=0 \\ z=0\end{array} .\right. {H(x,y)=0z=0.
    同理:如果能消去方程组中的变量 x x x 或变量 y y y,再分别和 x = 0 x=0 x=0 y = 0 y=0 y=0 联立起来.就可以 得到空间曲线 L L L y O z y O z yOz 面或 x O z x O z xOz 面上的投影曲线.

第九章 多元函数微分学及其应用

第一节 多元函数的基本概念
  1. 二元函数的定义
    D D D 是平面上的一个点集,如果对于每一个点 P ( x , y ) ∈ D , P(x, y) \in D, P(x,y)D, 变量 z z z 按照一定法则总有一 个唯一确定值和它对应,则称 z z z 是变量 x , y x, y x,y 的二元函数,记作 z = f ( x , y ) z=f(x, y) z=f(x,y).
    二元函数的图形是一张曲面. 如 z = a 2 − x 2 − y 2 z=\sqrt{a^{2}-x^{2}-y^{2}} z=a2x2y2 表示上半球面.

  2. 二元函数的极限
    设二元函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 ( x 0 , y 0 ) \left(x_{0}, y_{0}\right) (x0,y0) 的某去心邻域内有定义,如果动点 ( x , y ) (x, y) (x,y) 以任何方式 无限趋于点 ( x 0 , y 0 ) \left(x_{0}, y_{0}\right) (x0,y0) , z = f ( x , y ) , z=f(x, y) ,z=f(x,y) 总是无限趋于一个常数 A , A, A, 则称当 ( x , y ) (x, y) (x,y) 趋于 ( x 0 , y 0 ) \left(x_{0}, y_{0}\right) (x0,y0) 时, z = z= z= f ( x , y ) f(x, y) f(x,y) A A A 为极 限,记作 lim ⁡ x → x 0 y → y 0 f ( x , y ) = A . \lim _{x \rightarrow x_{0} \atop y \rightarrow y_{0}} f(x, y)=A . limyy0xx0f(x,y)=A.

  3. 二元函数的连续
    设函数 f ( x , y ) f(x, y) f(x,y) 在区域(或闭区域) D D D 内有定义,且 P 0 ∈ D P_{0} \in D P0D,若 lim ⁡ x → x 0 y → y 0 f ( x , y ) = f ( x 0 , y 0 ) , \lim _{x \rightarrow x_{0} \atop y \rightarrow y_{0}} f(x, y)=f\left(x_{0}, y_{0}\right), limyy0xx0f(x,y)=f(x0,y0), 则称函数 f ( x , y ) f(x, y) f(x,y) 在点 P 0 ( x 0 , y 0 ) P_{0}\left(x_{0}, y_{0}\right) P0(x0,y0) 连续.

  4. 偏导数
    设二元函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 ( x 0 , y 0 ) \left(x_{0}, y_{0}\right) (x0,y0) 的某去心邻域内有定义, 如果极限 lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x} limΔx0Δxf(x0+Δx,y0)f(x0,y0) 手在, 则称此极限为函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 ( x 0 , y 0 ) \left(x_{0}, y_{0}\right) (x0,y0) 处对 x x x 的偏导数,记作 ∂ z ∂ x ∣ x = x 0 y = y 0 , ∂ f ∂ x ∣ x = x 0 y = y 0 , z x ′ ∣ x = x 0 , \left.\frac{\partial z}{\partial x}\right|_{x=x_{0} \atop y=y_{0}},\left.\frac{\partial f}{\partial x}\right|_{x=x_{0} \atop y=y_{0}},\left.z_{x}^{\prime}\right|_{x=x_{0}}, xzy=y0x=x0,xfy=y0x=x0,zxx=x0, f x ′ ( x 0 , y 0 ) , f_{x}^{\prime}\left(x_{0}, y_{0}\right), fx(x0,y0), f x ′ ( x 0 , y 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x f_{x}^{\prime}\left(x_{0}, y_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x} fx(x0,y0)=limΔx0Δxf(x0+Δx,y0)f(x0,y0)

同理定义:函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 ( x 0 , y 0 ) \left(x_{0}, y_{0}\right) (x0,y0) 处对 y y y 的偏导数,记作 ∂ z ∂ y ∣ x = x 0 y = y 0 , ∂ f ∂ y ∣ x = x 0 y = y 0 , z y ′ ∣ x = x 0 , \left.\frac{\partial z}{\partial y}\right|_{x=x_{0} \atop y=y_{0}},\left.\frac{\partial f}{\partial y}\right|_{x=x_{0} \atop y=y_{0}},\left.z_{y}^{\prime}\right|_{x=x_{0}}, yzy=y0x=x0,yfy=y0x=x0,zyx=x0, f y ′ ( x 0 , y 0 ) , f_{y}^{\prime}\left(x_{0}, y_{0}\right), fy(x0,y0), f y ′ ( x 0 , y 0 ) = lim ⁡ Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y f_{y}^{\prime}\left(x_{0}, y_{0}\right)=\lim _{\Delta y \rightarrow 0} \frac{f\left(x_{0}, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)}{\Delta y} fy(x0,y0)=limΔy0Δyf(x0,y0+Δy)f(x0,y0)

\quad (1) f x ′ ( x 0 , y 0 ) = d d x f ( x , y 0 ) ∣ x = x 0 , f y ′ ( x 0 , y 0 ) = d d y f ( x 0 , y ) ∣ y = y 0 f_{x}^{\prime}\left(x_{0}, y_{0}\right)=\left.\frac{\mathrm{d}}{\mathrm{d} x} f\left(x, y_{0}\right)\right|_{x=x_{0}}, f_{y}^{\prime}\left(x_{0}, y_{0}\right)=\left.\frac{\mathrm{d}}{\mathrm{d} y} f\left(x_{0}, y\right)\right|_{y=y_{0}} fx(x0,y0)=dxdf(x,y0)x=x0,fy(x0,y0)=dydf(x0,y)y=y0

(2) 高阶偏等数:
∂ ∂ x ( ∂ z ∂ x ) = ∂ 2 z ∂ x 2 = f x x ′ ′ ( x , y ) , ∂ ∂ x ( ∂ z ∂ y ) = ∂ 2 z ∂ y ∂ x = f y x ′ ′ ( x , y ) ∂ ∂ y ( ∂ z ∂ x ) = ∂ 2 z ∂ x ∂ y = f x y ′ ′ ( x , y ) , ∂ ∂ y ( ∂ z ∂ y ) = ∂ 2 z ∂ y 2 = f y y ′ ′ ( x , y ) \begin{array}{l} \frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial^{2} z}{\partial x^{2}}=f_{x x}^{\prime \prime}(x, y), \quad \frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial^{2} z}{\partial y \partial x}=f_{y x}^{\prime \prime}(x, y) \\ \frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial^{2} z}{\partial x \partial y}=f_{x y}^{\prime \prime}(x, y), \quad \frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial^{2} z}{\partial y^{2}}=f_{y y}^{\prime \prime}(x, y) \end{array} x(xz)=x22z=fxx(x,y),x(yz)=yx2z=fyx(x,y)y(xz)=xy2z=fxy(x,y),y(yz)=y22z=fyy(x,y)

(3) 如果函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 的两个二阶混合偏导数 z x y , z y x z_{x y}, z_{y x} zxy,zyx D D D 内 连续,那么在 D D D 内这两个二阶混合偏导数必相等.

  1. 全微分的定义
    z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 ( x , y ) (x, y) (x,y) 的全增量可表示为
    Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) = A ⋅ Δ x + B ⋅ Δ y + o ( ( Δ x ) 2 + ( Δ y ) 2 ) \Delta z=f(x+\Delta x, y+\Delta y)-f(x, y)=A \cdot \Delta x+B \cdot \Delta y+o\left(\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}\right) Δz=f(x+Δx,y+Δy)f(x,y)=AΔx+BΔy+o((Δx)2+(Δy)2 )
    其中 A , B A, B A,B Δ x , Δ y \Delta x, \Delta y Δx,Δy 无关, 而仅仅与 x , y x, y x,y 有关, 则称函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 ( x , y ) (x, y) (x,y) 可微分, 而 A Δ x + B Δ y A \Delta x+B \Delta y AΔx+BΔy 称为函数 z = f ( x , y ) z=f(x, y) z=f(x,y) ( x , y ) (x, y) (x,y) 点的全微分,记作 d z = A Δ x + B Δ y . \mathrm{d} z=A \Delta x+B \Delta y . dz=AΔx+BΔy.

    (1) 若函数 z = f ( x , y ) z=f(x, y) z=f(x,y) ( x , y ) (x, y) (x,y),点可微, 则 函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 必在 ( x , y ) (x, y) (x,y) 处连续.
    (2) 若函数 z = f ( x , y ) z=f(x, y) z=f(x,y) ( x , y ) (x, y) (x,y),点可微, 则必有 f x ′ ( x , y ) , f y ′ ( x , y ) f_{x}^{\prime}(x, y), f_{y}^{\prime}(x, y) fx(x,y),fy(x,y) 存在, 且 A = f x ′ ( x , y ) , B = f y ′ ( x , y ) ,  即  d z = f x ( x , y ) ⋅ Δ x + f y ( x , y ) ⋅ Δ y A=f_{x}^{\prime}(x,y), B=f_{y}^{\prime}(x, y), \text { 即 } \mathrm{d} z=f_{x}(x, y) \cdot \Delta x+f_{y}(x, y) \cdot \Delta y A=fx(x,y),B=fy(x,y),  dz=fx(x,y)Δx+fy(x,y)Δy,习惯上记为 d z = f x ′ ( x , y ) d x + f y ′ ( x , y ) d y . \mathrm{d} z=f_{x}^{\prime}(x, y) \mathrm{d} x+f_{y}^{\prime}(x, y) \mathrm{d} y . dz=fx(x,y)dx+fy(x,y)dy.
    (3) 可微分的充分条件:若函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 的偏导数 f x ′ ( x , y ) , f y ′ ( x , y ) f_{x}^{\prime}(x, y), f_{y}^{\prime}(x, y) fx(x,y),fy(x,y) ( x , y ) (x, y) (x,y)点连续, 则函数在该点可微分.反之, 不成立。

总结 一元函数和多元函数在极限存在、连续、可导、可微的概念及它们的相互关系上有何相同和相异之处?
(1) 一元函数

image-20210124215113882

(2) 多元函数

image-20210124215133033

第二节 偏导数的计算方法

一、多元夏合函数的偏导数
复合函数求导法则 : 设 z = f ( u , v ) , u = φ ( x , y ) , v = ψ ( x , y ) , z=f(u, v), u=\varphi(x, y), v=\psi(x, y), z=f(u,v),u=φ(x,y),v=ψ(x,y), z = f [ φ ( x , y ) , ψ ( x , y ) z=f[\varphi(x, y), \psi(x, y) z=f[φ(x,y),ψ(x,y) 在点 ( x , y ) (x, y) (x,y) 的两个偏导数为
∂ z ∂ x = ∂ z ∂ u ⋅ ∂ u ∂ x + ∂ z ∂ v ⋅ ∂ v ∂ x ∂ z ∂ y = ∂ z ∂ u ⋅ ∂ u ∂ y + ∂ z ∂ v ⋅ ∂ v ∂ y \begin{array}{l} \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} \\ \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} \end{array} xz=uzxu+vzxvyz=uzyu+vzyv

(1) 设 z = f ( u , v ) , u = φ ( x ) , v = ψ ( x ) , z=f(u, v), u=\varphi(x), v=\psi(x), z=f(u,v),u=φ(x),v=ψ(x),
d z   d x = ∂ z ∂ u ⋅ d u   d x + ∂ z ∂ v ⋅ d v   d x \frac{\mathrm{d} z}{\mathrm{~d} x}=\frac{\partial z}{\partial u} \cdot \frac{\mathrm{d} u}{\mathrm{~d} x}+\frac{\partial z}{\partial v} \cdot \frac{\mathrm{d} v}{\mathrm{~d} x}  dxdz=uz dxdu+vz dxdv
(2) 设 z = f ( u , v , w ) , u = φ ( x , y ) , v = ψ ( x , y ) , w = w ( x , y ) , z=f(u, v, w), u=\varphi(x, y), v=\psi(x, y), w=w(x, y), z=f(u,v,w),u=φ(x,y),v=ψ(x,y),w=w(x,y),
∂ z ∂ x = ∂ z ∂ u ⋅ ∂ u ∂ x + ∂ z ∂ v ⋅ ∂ v ∂ x + ∂ z ∂ w ⋅ ∂ w ∂ x ∂ z ∂ y = ∂ z ∂ u ⋅ ∂ u ∂ y + ∂ z ∂ v ⋅ ∂ v ∂ y + ∂ z ∂ w ⋅ ∂ w ∂ y \begin{array}{l} \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}+\frac{\partial z}{\partial w} \cdot \frac{\partial w}{\partial x} \\ \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}+\frac{\partial z}{\partial w} \cdot \frac{\partial w}{\partial y} \end{array} xz=uzxu+vzxv+wzxwyz=uzyu+vzyv+wzyw
(3) 设 z = f ( u , v , w ) , u = x , v = y , w = w ( x , y ) ⟹ z = f [ x , y , w ( x , y ) ] , z=f(u, v, w), u=x, v=y, w=w(x, y) \Longrightarrow z=f[x, y, w(x, y)], z=f(u,v,w),u=x,v=y,w=w(x,y)z=f[x,y,w(x,y)],
∂ z ∂ x = ( ∂ z ∂ x ) + ∂ z ∂ u ∂ w ∂ x ∂ z ∂ y = ( ∂ z ∂ y ) + ∂ z ∂ w ∂ w ∂ y \begin{array}{l} \frac{\partial z}{\partial x}=\left(\frac{\partial z}{\partial x}\right)+\frac{\partial z}{\partial u} \frac{\partial w}{\partial x} \\ \frac{\partial z}{\partial y}=\left(\frac{\partial z}{\partial y}\right)+\frac{\partial z}{\partial w} \frac{\partial w}{\partial y} \end{array} xz=(xz)+uzxwyz=(yz)+wzyw
二、隐函数的偏导数

  1. 一个方程确定的隐函数的导数
    (1) 设由方程 F ( x , y ) = 0 F(x, y)=0 F(x,y)=0 确定隐函数 y = f ( x ) , y=f(x), y=f(x), d y   d x \frac{\mathrm{d} y}{\mathrm{~d} x}  dxdy.

方程两边对 x x x 求导得 : F x ( x , y ) + F y ( x , y ) d y   d x = 0 ⟹ d y   d x = − F x ( x , y ) F y ( x , y ) : F_{x}(x, y)+F_{y}(x, y) \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Longrightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{F_{x}(x, y)}{F_{y}(x, y)} :Fx(x,y)+Fy(x,y) dxdy=0 dxdy=Fy(x,y)Fx(x,y)
(2) 设由方程 F ( x , y , z ) = 0 F(x, y, z)=0 F(x,y,z)=0 确定隐函数 z = f ( x , y ) , z=f(x, y), z=f(x,y), ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} xz,yz.
方程两边对 x x x 求导得 : F x ( x , y , z ) + F z ( x , y , z ) ∂ z ∂ x = 0 ⟹ ∂ z ∂ x = − F x ( x , y , z ) F x ( x , y , z ) : F_{x}(x, y, z)+F_{z}(x, y, z) \frac{\partial z}{\partial x}=0 \Longrightarrow \frac{\partial z}{\partial x}=-\frac{F_{x}(x, y, z)}{F_{x}(x, y, z)} :Fx(x,y,z)+Fz(x,y,z)xz=0xz=Fx(x,y,z)Fx(x,y,z)
方程两边对 y y y 求导得 : F y ( x , y , z ) + F z ( x , y , z ) ∂ z ∂ y = 0 ⟹ ∂ z ∂ y = − F y ( x , y , z ) F z ( x , y , z ) : F_{y}(x, y, z)+F_{z}(x, y, z) \frac{\partial z}{\partial y}=0 \Longrightarrow \frac{\partial z}{\partial y}=-\frac{F_{y}(x, y, z)}{F_{z}(x, y, z)} :Fy(x,y,z)+Fz(x,y,z)yz=0yz=Fz(x,y,z)Fy(x,y,z)

  1. 由方程组确定的隐函数的导数
    (1) 设由方程组 { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \left\{\begin{array}{l}F(x, y, z)=0 \\ G(x, y, z)=0\end{array}\right. {F(x,y,z)=0G(x,y,z)=0 确定隐函数 y = y ( x ) , z = z ( x ) , y=y(x), z=z(x), y=y(x),z=z(x), d y   d x , d z   d x . \frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{d} z}{\mathrm{~d} x} .  dxdy, dxdz.
    方程组两边对 x x x 求导,得:

{ F x ′ + F y ′ d y   d x + F z ′ d z   d x = 0 G x ′ + G y y ′ d y   d x + G z ′ d z   d x = 0 ,  即  { F y ′ d y   d x + F z ′ d z   d x = − F x ′ G y ′ d y   d x + G z ′ d z   d x = − G x ′ \left\{\begin{array}{l} F_{x}^{\prime}+F_{y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+F_{z}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \\ G_{x}^{\prime}+G_{y y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+G_{z}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=0 \end{array}, \quad\right. \text { 即 }\left\{\begin{array}{l} F_{y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+F_{z}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=-F_{x}^{\prime} \\ G_{y}^{\prime} \frac{\mathrm{d} y}{\mathrm{~d} x}+G_{z}^{\prime} \frac{\mathrm{d} z}{\mathrm{~d} x}=-G_{x}^{\prime} \end{array}\right. {Fx+Fy dxdy+Fz dxdz=0Gx+Gyy dxdy+Gz dxdz=0,  {Fy dxdy+Fz dxdz=FxGy dxdy+Gz dxdz=Gx
​ 将 d y   d x , d z   d x \frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{d} z}{\mathrm{~d} x}  dxdy, dxdz 当作未知量求解出.

​ (2) 设由方程组 { F ( x , y , u , v ) = 0 G ( x , y , u , v ) = 0 \left\{\begin{array}{l}F(x, y, u, v)=0 \\ G(x, y, u, v)=0\end{array}\right. {F(x,y,u,v)=0G(x,y,u,v)=0 确定隐函数 u = u ( x , y ) , v = v ( x , y ) , u=u(x, y), v=v(x, y), u=u(x,y),v=v(x,y), ∂ u ∂ x , ∂ u ∂ y , ∂ v ∂ x , ∂ v ∂ y \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} xu,yu,xv,yv
方程组两边对 x x x 求偏导,得
{ F x ′ + F u ′ ∂ u ∂ x + F v ′ ∂ v ∂ x = 0 G x ′ + G u ′ ∂ u ∂ x + G v ′ ∂ v ∂ x = 0 ,  即  { F u ′ ∂ u ∂ x + F v ′ ∂ v ∂ x = − F x ′ G u ′ ∂ u ∂ x + G v ′ ∂ v ∂ x = − G x ′ \left\{\begin{array}{l} F_{x}^{\prime}+F_{u}^{\prime} \frac{\partial u}{\partial x}+F_{v}^{\prime} \frac{\partial v}{\partial x}=0 \\ G_{x}^{\prime}+G_{u}^{\prime} \frac{\partial u}{\partial x}+G_{v}^{\prime} \frac{\partial v}{\partial x}=0 \end{array}, \quad\right. \text { 即 }\left\{\begin{array}{l} F_{u}^{\prime} \frac{\partial u}{\partial x}+F_{v}^{\prime} \frac{\partial v}{\partial x}=-F_{x}^{\prime} \\ G_{u}^{\prime} \frac{\partial u}{\partial x}+G_{v}^{\prime} \frac{\partial v}{\partial x}=-G_{x}^{\prime} \end{array}\right. {Fx+Fuxu+Fvxv=0Gx+Guxu+Gvxv=0,  {Fuxu+Fvxv=FxGuxu+Gvxv=Gx
解出 ∂ u ∂ x , ∂ v ∂ x \frac{\partial u}{\partial x}, \frac{\partial v}{\partial x} xu,xv 同理 : 可得出 ∂ u ∂ y , ∂ v ∂ y \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y} yu,yv

三、函数的全微分
(1) 设 z = f ( x , y ) z=f(x, y) z=f(x,y) 可微, 则全微分 d z = ∂ z ∂ x   d x + ∂ z ∂ y   d y . \mathrm{d} z=\frac{\partial z}{\partial x} \mathrm{~d} x+\frac{\partial z}{\partial y} \mathrm{~d} y . dz=xz dx+yz dy.
(2) 设 u = f ( x , y , z ) u=f(x, y, z) u=f(x,y,z) 可微, 则全微分 d u = ∂ u ∂ x   d x + ∂ u ∂ y   d y + ∂ u ∂ z   d z . \mathrm{d} u=\frac{\partial u}{\partial x} \mathrm{~d} x+\frac{\partial u}{\partial y} \mathrm{~d} y+\frac{\partial u}{\partial z} \mathrm{~d} z . du=xu dx+yu dy+zu dz.

第三节 多元函数的极值与最值
  1. 极值的定义与有关定理
    (1) 极值的定义

设函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P 0 ( x 0 , y 0 ) P_{0}\left(x_{0}, y_{0}\right) P0(x0,y0) 的某实心邻域内有定义,若对该邻域内异于 P 0 P_{0} P0 的任意点 P ( x , y ) . \mathrm{P}(x, y) . P(x,y). 总有 f ( x n ⋅ v n ) ⩾ f ( x , y ) ( f\left(x_{n} \cdot v_{n}\right) \geqslant f(x, y)\left(\right. f(xnvn)f(x,y)( f ( x 0 , y 0 ) ⩽ f ( x , y ) ) \left.f\left(x_{0}, y_{0}\right) \leqslant f(x, y)\right) f(x0,y0)f(x,y)) 成立, 则称 f ( x 0 , y 0 ) f\left(x_{0}, y_{0}\right) f(x0,y0) 是函数 z = f ( x , v ) z=f(x, v) z=f(x,v) 在点 P 0 ( x 0 , y 0 ) P_{0}\left(x_{0}, y_{0}\right) P0(x0,y0) 处取得的极大值 (或极小值.).

\quad 方 程组 { f x ′ ( x , y ) = 0 f y ′ ( x , y ) = 0 \left\{\begin{array}{l}f_{x}^{\prime}(x, y)=0 \\ f_{y}^{\prime}(x, y)=0\end{array}\right. {fx(x,y)=0fy(x,y)=0 的解,称为函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 的驻点.

(2) 极值存在的必要条件
设函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 ( x 0 , y 0 ) \left(x_{0}, y_{0}\right) (x0,y0) 一阶偏导数存在, 且 ( x 0 , y 0 ) \left(x_{0}, y_{0}\right) (x0,y0) 为极值点, 则 f x ′ ( x 0 , y 0 ) = 0 f_{x}^{\prime}\left(x_{0}, y_{0}\right)=0 fx(x0,y0)=0 f y ′ ( x 0 , y 0 ) = 0 f_{y}^{\prime}\left(x_{0}, y_{0}\right)=0 fy(x0,y0)=0

(3) 极值存在的充分条件
设函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 ( x 0 , y 0 ) \left(x_{0}, y_{0}\right) (x0,y0) 的某邻域内有二阶连续偏导数, 且 f x ′ ( x 0 , y 0 ) = 0 , f v ′ ( x 0 , y 0 ) = 0. f_{x}^{\prime}\left(x_{0}, y_{0}\right)=0, f_{v}^{\prime}\left(x_{0},\right. \left.y_{0}\right)=0 . fx(x0,y0)=0,fv(x0,y0)=0. f x x ′ ′ ( x 0 , y 0 ) = A , f x y ′ ′ ( x 0 , y 0 ) = B , f y y ′ ′ ( x 0 , y 0 ) = C , f_{x x}^{\prime \prime}\left(x_{0}, y_{0}\right)=A, f_{x y}^{\prime \prime}\left(x_{0}, y_{0}\right)=B, f_{y y}^{\prime \prime}\left(x_{0}, y_{0}\right)=C, fxx(x0,y0)=A,fxy(x0,y0)=B,fyy(x0,y0)=C,
(1) 当 A C − B 2 > 0 A C-B^{2}>0 ACB2>0 时,具有极值,且当 A < 0 A<0 A<0 时有极大值, 当 A > 0 A>0 A>0 时有极小值.
(2) 当 A C − B 2 < 0 A C-B^{2}<0 ACB2<0 时,没有极值.
(3) 当 A C − B 2 = 0 A C-B^{2}=0 ACB2=0 另作讨论.

  1. 无条件极值
    (1) 函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在其定义域 D D D 上的极值,称为无条件极值.
    (2) 求无条件极值的步骤 :
    (1) 求解方程组 { f x ′ ( x , y ) = 0 f y ′ ( x , y ) = 0 \left\{\begin{array}{l}f_{x}^{\prime}(x, y)=0 \\ f_{y}^{\prime}(x, y)=0\end{array}\right. {fx(x,y)=0fy(x,y)=0 的一切实数解(或偏导数不存在的点),即得函数的可能极值点.
    (2) 利用极值存在的充分条件判定所求可能极值点是否为极值点.
    (3) 求出极值.
    注 1) 驻点不一定是极值点. 2) 偏导数不存在的点也可能是极值点.

  2. 条件极值与拉格朗日乘数法
    (1) 求函数 z = f ( x , y ) , ( x , y ) ∈ D z=f(x, y),(x, y) \in D z=f(x,y),(x,y)D 在约束京件 φ ( x , y ) = 0 \varphi(x, y)=0 φ(x,y)=0 下的极值问题,称为条件极值问题.
    (2) 拉格朗日乘数法求解条件极值的一般方法有两种:一种是利用所给约束条件把条件极值问题转化为无条
    件极值问题;另一种是拉格朗日乘数法.
    拉格朗日乘数法的步骤
    (1) 作拉格朗日函数: F ( x , y , λ ) = f ( x , y ) + λ φ ( x , y ) F(x, y, \lambda)=f(x, y)+\lambda \varphi(x, y) F(x,y,λ)=f(x,y)+λφ(x,y)

    (2) 求解方程组 { ∂ F ∂ x = ∂ f ∂ x + λ ∂ φ ∂ x = 0 ∂ F ∂ y = ∂ f ∂ y + λ ∂ φ ∂ y = 0  得可能的极值点  ( x 0 , y 0 ) ∂ F ∂ λ = φ ( x , y ) = 0 \left\{\begin{array}{l}\frac{\partial F}{\partial x}=\frac{\partial f}{\partial x}+\lambda \frac{\partial \varphi}{\partial x}=0 \\ \frac{\partial F}{\partial y}=\frac{\partial f}{\partial y}+\lambda \frac{\partial \varphi}{\partial y}=0 \text { 得可能的极值点 }\left(x_{0}, y_{0}\right) \\ \frac{\partial F}{\partial \lambda}=\varphi(x, y)=0\end{array}\right. xF=xf+λxφ=0yF=yf+λyφ=0 得可能的极值点 (x0,y0)λF=φ(x,y)=0
    \quad u = f ( x , y , z ) u=f(x, y, z) u=f(x,y,z) 在条件 φ ( x , y , z ) = 0 \varphi(x, y, z)=0 φ(x,y,z)=0 下的极值的拉格朗日乘数法?

  3. 最大值与最 /J值
    (1) 设函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在闭区域 D D D 上连续,则该函数在 D D D 上必有最大值与最小值.

    (2)求解方法:求出可能极值点的函数值与边界点的函数值,进行比较即可.

    解题步骤
    (1) 求出 f ( x , y ) f(x, y) f(x,y) D D D 内部的所有可能的极值点(不可导点、驻点)的函数值;
    (2) 求出 f ( x , y ) f(x, y) f(x,y) D D D 的边界上的最大(小)值;
    (3) 比较上面的函数值,得出最大(小)值.

第四节 多元函数微分学的几何应用及方向导数与梯度

一、空间曲线的切线与法平面及空间曲面的切平面与法线

  1. 空间曲线的切线与法开面
    设曲线的方程为 { x = φ ( t ) y = ψ ( t ) ,  则在曲线上对应  t = t 0  的点  P 0 ( x 0 , y 0 , z 0 )  处的切线方程为  z = ω ( t ) \left\{\begin{array}{l}x=\varphi(t) \\ y=\psi(t), \text { 则在曲线上对应 } t=t_{0} \text { 的点 } P_{0}\left(x_{0}, y_{0}, z_{0}\right) \text { 处的切线方程为 } \\ z=\omega(t)\end{array}\right. x=φ(t)y=ψ(t), 则在曲线上对应 t=t0 的点 P0(x0,y0,z0) 处的切线方程为 z=ω(t)
    x − x 0 φ ′ ( t 0 ) = y − y 0 ψ ′ ( t 0 ) = z − z 0 ω ′ ( t 0 ) ; \frac{x-x_{0}}{\varphi^{\prime}\left(t_{0}\right)}=\frac{y-y_{0}}{\psi^{\prime}\left(t_{0}\right)}=\frac{z-z_{0}}{\omega^{\prime}\left(t_{0}\right)} ; φ(t0)xx0=ψ(t0)yy0=ω(t0)zz0;
    法平面方程为 φ ′ ( t 0 ) ( x − x 0 ) + ψ ′ ( t 0 ) ( y − y 0 ) + ω ′ ( t 0 ) ( z − z 0 ) = 0. \varphi^{\prime}\left(t_{0}\right)\left(x-x_{0}\right)+\psi^{\prime}\left(t_{0}\right)\left(y-y_{0}\right)+\omega^{\prime}\left(t_{0}\right)\left(z-z_{0}\right)=0 . φ(t0)(xx0)+ψ(t0)(yy0)+ω(t0)(zz0)=0.
    注:
    (1) 空间曲线的方程为 { y = φ ( x ) z = ψ ( x ) \left\{\begin{array}{l}y=\varphi(x) \\ z=\psi(x)\end{array}\right. {y=φ(x)z=ψ(x), 如何求任一点切线和法平面方程?

切线方 程 : x − x 0 1 = y − y 0 φ ′ ( x 0 ) = z − z 0 ψ ′ ( x 0 ) : \frac{x-x_{0}}{1}=\frac{y-y_{0}}{\varphi^{\prime}\left(x_{0}\right)}=\frac{z-z_{0}}{\psi^{\prime}\left(x_{0}\right)} :1xx0=φ(x0)yy0=ψ(x0)zz0
法平面方程 : ( x − x 0 ) + φ ′ ( x 0 ) ( y − y 0 ) + ψ ′ ( x 0 ) ( z − z 0 ) = 0 :\left(x-x_{0}\right)+\varphi^{\prime}\left(x_{0}\right)\left(y-y_{0}\right)+\psi^{\prime}\left(x_{0}\right)\left(z-z_{0}\right)=0 :(xx0)+φ(x0)(yy0)+ψ(x0)(zz0)=0
(2) 空间曲线的方程为 { F ( x , y , z ) = 0 G ( x , y , z ) = 0 , \left\{\begin{array}{l}F(x, y, z)=0 \\ G(x, y, z)=0\end{array},\right. {F(x,y,z)=0G(x,y,z)=0, 在,点 M ( x 0 , y 0 , z 0 ) M\left(x_{0}, y_{0}, z_{0}\right) M(x0,y0,z0) 处的切线方程和法平面方
程如何求?

  1. 空间曲面的切平面与法线
    (1) 曲面 Σ \Sigma Σ 上通过点 M M M 的一切曲线在点 M M M 的切线都在同一个平面上,就这个平面就称 为曲面 Σ \Sigma Σ 在点 M M M 的切平面.
    (2) 设曲面 Σ \Sigma Σ 的方程为 F ( x , y , z ) = 0 F(x, y, z)=0 F(x,y,z)=0,则曲面上古 M ( x 0 , y 0 , z 0 ) M\left(x_{0}, y_{0}, z_{0}\right) M(x0,y0,z0) 处的切平面方程为
    F x ′ ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ′ ( x 0 , y 0 , z 0 ) ( y − y 0 ) + F z ′ ( x 0 , y 0 , z 0 ) ( z − z 0 ) = 0 F_{x}^{\prime}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}^{\prime}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}^{\prime}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0 Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0)+Fz(x0,y0,z0)(zz0)=0
    法线方程为
    x − x 0 F x ′ ( M ) = y − y 0 F y ′ ( M ) = z − z 0 F z ′ ( M ) \frac{x-x_{0}}{F_{x}^{\prime}(M)}=\frac{y-y_{0}}{F_{y}^{\prime}(M)}=\frac{z-z_{0}}{F_{z}^{\prime}(M)} Fx(M)xx0=Fy(M)yy0=Fz(M)zz0

​ 注 \quad 曲 面方程为 z = f ( x , y ) , z=f(x, y), z=f(x,y), 转化为 F ( x , y , z ) = z − f ( x , y ) F(x, y, z)=z-f(x, y) F(x,y,z)=zf(x,y) 求解切平面方程与法线方程.

二、方向导数与梯度

  1. 方向导数
    (1) 方向导数的定义

设函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P ( x , y ) P(x, y) P(x,y) 的某个邻域内有定义,从点 P ( x , y ) P(x, y) P(x,y) 引射线 l l l,并设 P ( x + P(x+ P(x+ Δ x , y + Δ y ) \Delta x, y+\Delta y) Δx,y+Δy) l l l 的另外一点.若极 限 lim ⁡ ρ → 0 f ( x + Δ x , y + Δ y ) − f ( x , y ) ρ \lim _{\rho \rightarrow 0} \frac{f(x+\Delta x, y+\Delta y)-f(x, y)}{\rho} limρ0ρf(x+Δx,y+Δy)f(x,y) 存在,则称此极限值为函数 f ( x , y ) f(x, y) f(x,y) 在点 P ( x , y ) P(x, y) P(x,y) 处沿方向 l l l 的方向导数,记作 ∂ f ∂ l , \frac{\partial f}{\partial l}, lf, 其中 ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} ρ=(Δx)2+(Δy)2 .
∂ f ∂ l \frac{\partial f}{\partial l} lf 表示 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P ( x , y ) P(x, y) P(x,y) 处沿方向 l l l 的变化率, 即表示函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 $P(x,y) $沿着这个方向函数增长快慢.

(2) 方向导数的存在性及计算
若函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 在点 P ( x 0 , y 0 ) P\left(x_{0}, y_{0}\right) P(x0,y0) 是可徵的,那么函数在该点沿任一方向 l l l 的方向导数存在,且 ∂ f ∂ l = ∂ f ∂ x ∣ p ⋅ cos ⁡ φ + ∂ f ∂ y ∣ P ⋅ sin ⁡ φ , \frac{\partial f}{\partial l}=\left.\frac{\partial f}{\partial x}\right|_{p} \cdot \cos \varphi+\left.\frac{\partial f}{\partial y}\right|_{P} \cdot \sin \varphi, lf=xfpcosφ+yfPsinφ, 其中 φ \varphi φ x x x 轴正向按逆时针到 l l l 的转角.
\quad u = f ( x , y , z ) u=f(x, y, z) u=f(x,y,z) 在点 P ( x , y , z ) P(x, y, z) P(x,y,z) 处可微,那么 函数在该点沿着方向 l l l 的方向导数为 ∂ f ∂ l = ∂ f ∂ x cos ⁡ α + ∂ f ∂ y cos ⁡ β + ∂ f ∂ z cos ⁡ γ , \frac{\partial f}{\partial l}=\frac{\partial f}{\partial x} \cos \alpha+\frac{\partial f}{\partial y} \cos \beta+\frac{\partial f}{\partial z} \cos \gamma, lf=xfcosα+yfcosβ+zfcosγ, 其中 α , β , γ \alpha, \beta, \gamma α,β,γ 为方向 l l l 的方向角.

  1. 梯度
    (1) 设函数 z = f ( x , y ) z=f(x, y) z=f(x,y) 具有一阶连续偏导数, 则其梯度 grad ⁡ f ( x , y ) = ∂ f ∂ x i + ∂ f ∂ y j . \operatorname{grad} f(x, y)=\frac{\partial f}{\partial x} i+\frac{\partial f}{\partial y} j . gradf(x,y)=xfi+yfj.
    (2) 设函数 u = f ( x , y , z ) u=f(x, y, z) u=f(x,y,z) 具有一阶连续偏导数,则其梯度 grad ⁡ f ( x , y , z ) = ∂ f ∂ x i + ∂ f ∂ y j + ∂ f ∂ z k \operatorname{grad} f(x, y, z)=\frac{\partial f}{\partial x} i+\frac{\partial f}{\partial y} j+ \frac{\partial f}{\partial z} k gradf(x,y,z)=xfi+yfj+zfk
    \quad 函数在某点的梯度是这样一个向量:它的方向与取得最大方向导数的方向一致, 而它的模为方向导数的最大值,梯度的模为 ∣ grad ⁡ f ( x , y ) ∣ = ( f x ) 2 + ( f y ) 2 |\operatorname{grad} f(x, y)|=\sqrt{\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} gradf(x,y)=(fx)2+(fy)2

第十章 重积分

第一节 二重积分

一、二重积分的概念及性质

  1. 定义 ∬ D f ( x , y ) d σ = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ σ i , λ \iint_{D} f(x, y) \mathrm{d} \sigma=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \Delta \sigma_{i}, \lambda Df(x,y)dσ=limλ0i=1nf(ξi,ηi)Δσi,λ 为各小闭区域的直径中的最大值.
    ∬ D f ( x , y ) d σ \quad \iint_{D} f(x, y) \mathrm{d} \sigma Df(x,y)dσ 是数, 这个数与 f ( x , y ) f(x, y) f(x,y) D D D 有关,而与积分变量 x , y x, y x,y 无关,即 ∬ D f ( x , y ) d σ = ∬ D f ( u , v ) d σ \iint_{D} f(x, y) \mathrm{d} \sigma=\iint_{D} f(u, v) \mathrm{d} \sigma Df(x,y)dσ=Df(u,v)dσ

  2. 几何意义与物理意义
    (1) 几何意义 设 f ( x , y ) ⩾ 0 , ∬ D f ( x , y ) d σ f(x, y) \geqslant 0, \iint_{D} f(x, y) \mathrm{d} \sigma f(x,y)0,Df(x,y)dσ 表示以 z = f ( x , y ) z=f(x, y) z=f(x,y) 为顶,以 D D D 为底,侧面是以 D D D 的边界曲线 为准线,母线平行于 Z Z Z 轴的柱面的体积.
    (2) 物理意义:平面薄片的质量 M = ∬ D ρ ( x , y ) d x   d y M=\iint_{D} \rho(x, y) \mathrm{d} x \mathrm{~d} y M=Dρ(x,y)dx dy,其中 ρ ( x , y ) \rho(x, y) ρ(x,y) 为面密度.

  3. 性质
    (1) ∬ D ( k 1 f ( x , y ) + k 2 g ( x , y ) ) d x   d y = k 1 ∬ D f ( x , y ) d x   d y + k 2 ∬ D g ( x , y ) d x   d y \iint_{D}\left(k_{1} f(x, y)+k_{2} g(x, y)\right) \mathrm{d} x \mathrm{~d} y=k_{1} \iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y+k_{2} \iint_{D} g(x, y) \mathrm{d} x \mathrm{~d} y D(k1f(x,y)+k2g(x,y))dx dy=k1Df(x,y)dx dy+k2Dg(x,y)dx dy
    (2) ∬ D = D 1 + D 2 f ( x , y ) d x   d y = ∬ D 1 f ( x , y ) d x   d y + ∬ D 2 f ( x , y ) d x   d y \iint_{D=D_{1}+D_{2}} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{D_{1}} f(x, y) \mathrm{d} x \mathrm{~d} y+\iint_{D_{2}} f(x, y) \mathrm{d} x \mathrm{~d} y D=D1+D2f(x,y)dx dy=D1f(x,y)dx dy+D2f(x,y)dx dy
    (3) ∬ D   d σ = S D , \iint_{D} \mathrm{~d} \sigma=S_{D}, D dσ=SD, 其中 S D S_{D} SD D D D 的面积

(4) 若 f ( x , y ) ⩽ g ( x , y ) , ( x , y ) ∈ D , f(x, y) \leqslant g(x, y),(x, y) \in D, f(x,y)g(x,y),(x,y)D, ∬ D f ( x , y ) d x   d y ⩽ ∬ D g ( x , y ) d x   d y \iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y \leqslant \iint_{D} g(x, y) \mathrm{d} x \mathrm{~d} y Df(x,y)dx dyDg(x,y)dx dy
(5) 二重积分的中值定理:设函数 f ( x , y ) f(x, y) f(x,y) 在区域 D D D 上连续,则 ∬ D f ( x , y ) d σ = f ( ξ , η ) ⋅ S D . \iint_{D} f(x, y) \mathrm{d} \sigma=f(\xi, \eta) \cdot S_{D} . Df(x,y)dσ=f(ξ,η)SD.

  1. 利用奇偶函数及对称性化简
    (1) ∬ D f ( x , y ) d σ = D  关于  x  轴对称  { 0 , f ( x , y )  关于  y  为奇函数  2 ∬ D 1 f ( x , y ) d x   d y , f ( x , y )  关于  y  为偶函数  \iint_{D} f(x, y) \mathrm{d} \sigma\stackrel{D \text { 关于 } x \text { 轴对称 }}{=} \left\{\begin{array}{ll}0, & f(x, y) \text { 关于 } y \text { 为奇函数 } \\ 2 \iint_{D_{1}} f(x, y) \mathrm{d} x \mathrm{~d} y, & f(x, y) \text { 关于 } y \text { 为偶函数 }\end{array}\right. Df(x,y)dσ=D 关于 x 轴对称 {0,2D1f(x,y)dx dy,f(x,y) 关于 y 为奇函数 f(x,y) 关于 y 为偶函数 

(2) ∬ D f ( x , y ) d σ = D  关于  y  轴对称  { 0 , f ( x , y )  关于  x  为奇函数  2 ∬ D 1 ∫ f ( x , y ) d x   d y , f ( x , y )  关于  x  为偶函数  \iint_{D} f(x, y) \mathrm{d} \sigma \stackrel{D \text { 关于 } y \text { 轴对称 }}{=}\left\{\begin{array}{ll}0, & f(x, y) \text { 关于 } x \text { 为奇函数 } \\ 2 \iint_{D_{1}}^{\int} f(x, y) \mathrm{d} x \mathrm{~d} y, & f(x, y) \text { 关于 } x \text { 为偶函数 }\end{array}\right. Df(x,y)dσ=D 关于 y 轴对称 {0,2D1f(x,y)dx dy,f(x,y) 关于 x 为奇函数 f(x,y) 关于 x 为偶函数 

二、二重积分计算

  1. 利用直角坐标计算二重积分
    (1) 先对 y y y 后对 x x x
    设区域 D D D 可以用不等式 φ 1 ( x ) ⩽ y ⩽ φ 2 ( x ) , a ⩽ x ⩽ b \varphi_{1}(x) \leqslant y \leqslant \varphi_{2}(x), a \leqslant x \leqslant b φ1(x)yφ2(x),axb 来表示,则
    ∬ D f ( x , y ) d σ = ∫ a b   d x ∫ φ 1 ( x ) φ 2 ( x ) f ( x , y ) d y \iint_{D} f(x, y) \mathrm{d} \sigma=\int_{a}^{b} \mathrm{~d} x \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) \mathrm{d} y Df(x,y)dσ=ab dxφ1(x)φ2(x)f(x,y)dy
    (2) 先对 x x x 咸对 y y y
    设区域 D D D 可以用不等式 ψ 1 ( y ) ⩽ x ⩽ ψ 2 ( y ) , c ⩽ y ⩽ d \psi_{1}(y) \leqslant x \leqslant \psi_{2}(y), c \leqslant y \leqslant d ψ1(y)xψ2(y),cyd 来表示,则
    ∬ D f ( x , y ) d σ = ∫ c d   d y ∫ φ 1 ( y ) q 2 ( y ) f ( x , y ) d x \iint_{D} f(x, y) \mathrm{d} \sigma=\int_{c}^{d} \mathrm{~d} y \int_{\varphi_{1}(y)}^{q_{2}(y)} f(x, y) \mathrm{d} x Df(x,y)dσ=cd dyφ1(y)q2(y)f(x,y)dx

  1. 利用极坐标计算二重积分
    (1) 极坐标与直角坐标的关系

​ 1) { x = r cos ⁡ θ y = r sin ⁡ θ  2)  x 2 + y 2 = r 2  3)  d σ = r   d r   d θ \left\{\begin{array}{ll}x=r \cos \theta \\ y=r \sin \theta & \text { 2) } x^{2}+y^{2}=r^{2} \quad \text { 3) } \mathrm{d} \sigma=r \mathrm{~d} r \mathrm{~d} \theta\end{array}\right. {x=rcosθy=rsinθ 2) x2+y2=r2 3) dσ=r dr dθ
(2) 设区域 D D D 可以用不等式 φ 1 ( θ ) ⩽ r ⩽ φ 2 ( θ ) , α ⩽ θ ⩽ β \varphi_{1}(\theta) \leqslant r \leqslant \varphi_{2}(\theta), \alpha \leqslant \theta \leqslant \beta φ1(θ)rφ2(θ),αθβ 来表示,则

∬ D f ( x , y ) d σ = ∬ D f ( r cos ⁡ θ , r sin ⁡ θ ) r   d r   d θ = ∫ α β d θ ∫ φ 1 ( θ ) φ 2 ( θ ) f ( r cos ⁡ θ , r sin ⁡ θ ) r   d r \begin{aligned} \iint_{D} f(x, y) \mathrm{d} \sigma &=\iint_{D} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r \mathrm{~d} \theta \\ &=\int_{\alpha}^{\beta} \mathrm{d} \theta \int_{\varphi_{1}(\theta)}^{\varphi_{2}(\theta)} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r \end{aligned} Df(x,y)dσ=Df(rcosθ,rsinθ)r dr dθ=αβdθφ1(θ)φ2(θ)f(rcosθ,rsinθ)r dr

\quad 当积分区域 D D D 为圆域、圆环域、或圆域某部分,被积函数为 f ( x 2 + y 2 ) f\left(x^{2}+y^{2}\right) f(x2+y2) 等形式时,选用 极坐标较为方便.

第二节 三重积分

一、三重积分的概念及性质

  1. 定义 ∭ Ω f ( x , y , z ) d v = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ v i , λ \quad \iiint_{\Omega} f(x, y, z) \mathrm{d} v=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta v_{i}, \lambda Ωf(x,y,z)dv=limλ0i=1nf(ξi,ηi,ζi)Δvi,λ 为各小闭区域的直径中的最大值.

    ∬ Ω f ( x , y , z ) d v \quad \iint_{\Omega} f(x, y, z) \mathrm{d} v Ωf(x,y,z)dv 是数,这个数与 f ( x , y , z ) f(x, y, z) f(x,y,z) Ω \Omega Ω 有关,而与积分变量 x , y , z x, y, z x,y,z 无关, R P \mathrm{RP} RP
    ∭ Ω f ( x , y , z ) d v = ∭ Ω f ( u , v , w ) d v \iiint_{\Omega} f(x, y, z) \mathrm{d} v=\iiint_{\Omega} f(u, v, w) \mathrm{d} v Ωf(x,y,z)dv=Ωf(u,v,w)dv

  2. 物理意义 \quad 立体的质量 M = ∬ Ω ρ ( x , y , z ) d v , M=\iint_{\Omega} \rho(x, y, z) \mathrm{d} v, M=Ωρ(x,y,z)dv, 其中 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) 为密度.

  3. 性质 二重积分的性质可以推广到三重积分.

  4. 利用奇偶函数及对称性化简
    ∭ Ω f ( x , y , z ) d v = { 0 , f ( x , y , z )  关于  x  为合函数  2 ∭ Ω 1 f ( x , y , z ) d v , f ( x , y , z )  关于  x  为偶 函数  \iiint_{\Omega} f(x, y, z) \mathrm{d} v=\left\{\begin{array}{ll} 0, & f(x, y, z) \text { 关于 } x \text { 为合函数 } \\ 2 \iiint_{\Omega_{1}} f(x, y, z) \mathrm{d} v, & f(x, y, z) \text { 关于 } x \text { 为偶 函数 } \end{array}\right. Ωf(x,y,z)dv={0,2Ω1f(x,y,z)dv,f(x,y,z) 关于 x 为合函数 f(x,y,z) 关于 x 为偶 函数 
    \quad 区域关于 y O z y O z yOz 平面对称.

二、三重积分的计算

  1. 利用直角坐标计算三重积分

(1) 投影法(先一后二) 设区域 Ω \Omega Ω 可以表示为 { ( x , y , z ) ∣ z 1 ( x , y ) ⩽ z ⩽ z 2 ( x , y ) , ( x , y ) ∈ D x y } , \left\{(x, y, z) \mid z_{1}(x, y) \leqslant z \leqslant z_{2}(x, y),(x, y) \in D_{x y}\right\}, {(x,y,z)z1(x,y)zz2(x,y),(x,y)Dxy}, 其中
D x y = { ( x , y ) ∣ y 1 ( x ) ⩽ y ⩽ y 2 ( x ) , a ⩽ x ⩽ b }  则  ∭ Ω f ( x , y , z ) d v = ∬ D x y [ ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z ] d x   d y \begin{array}{l} \quad D_{x y}=\left\{(x, y) \mid y_{1}(x) \leqslant y \leqslant y_{2}(x), a \leqslant x \leqslant b\right\} \\ \text { 则 } \iiint_{\Omega} f(x, y, z) \mathrm{d} v=\iint_{D_{x y}}\left[\int_{z_{1}(x, y)}^{z_{2}(x, y)} f(x, y, z) \mathrm{d} z\right] \mathrm{d} x \mathrm{~d} y \end{array} Dxy={(x,y)y1(x)yy2(x),axb}  Ωf(x,y,z)dv=Dxy[z1(x,y)z2(x,y)f(x,y,z)dz]dx dy
(2) 截面法(先二后一) 设区域 Ω \Omega Ω 可以表示为 { ( x , y , z ) ∣ ( x , y ) ∈ D z , c 1 ⩽ z ⩽ c 2 } \left\{(x, y, z) \mid(x, y) \in D_{z}, c_{1} \leqslant z \leqslant c_{2}\right\} {(x,y,z)(x,y)Dz,c1zc2},其中 D z D_{z} Dz 是用平行于 x O y x O y xOy 面且. 纵坐标为 z z z 的平面截区域 Ω \Omega Ω 所得到的平甫区域,则
∭ Ω f ( x , y , z ) d v = ∫ c 1 c 2 [ ∬ D ( z ) f ( x , y , z ) d x   d y ] d z \iiint_{\Omega} f(x, y, z) \mathrm{d} v=\int_{c_{1}}^{c_{2}}\left[\iint_{D(z)} f(x, y, z) \mathrm{d} x \mathrm{~d} y\right] \mathrm{d} z Ωf(x,y,z)dv=c1c2[D(z)f(x,y,z)dx dy]dz
注:(1) 当对 x , y x, y x,y 使用极坐标形式, m \sqrt{\mathrm{m}} m z 不变时, 称为柱坐标, 即 { x = r cos ⁡ θ y = r sin ⁡ θ . z = z \left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta . \\ z=z\end{array}\right. x=rcosθy=rsinθ.z=z
(2) 利用柱坐标计算三重积分,即 ∬ Ω f ( x , y , z ) d x   d y   d z = ∭ Ω f ( r sin ⁡ θ , r cos ⁡ θ , z ) r   d r   d θ d z \iint_{\Omega} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\iiint_{\Omega} f(r \sin \theta, r \cos \theta, z) r \mathrm{~d} r \mathrm{~d} \theta \mathrm{d} z Ωf(x,y,z)dx dy dz=Ωf(rsinθ,rcosθ,z)r dr dθdz
(3) 当 D x y D_{x y} Dxy D z D_{z} Dz 使用极坐标计算二重积分简单时, 则采用柱坐标计算三重积分.

  1. 利用球坐标计算三重积分
    (1) 球坐标与直角坐标的关系
    1) { x = r cos ⁡ θ sin ⁡ φ y = r sin ⁡ θ sin ⁡ φ z = r cos ⁡ φ \left\{\begin{array}{l}x=r \cos \theta \sin \varphi \\ y=r \sin \theta \sin \varphi \\ z=r \cos \varphi\end{array} \quad\right. x=rcosθsinφy=rsinθsinφz=rcosφ 2) x 2 + y 2 + z 2 = r 2 x^{2}+y^{2}+z^{2}=r^{2} x2+y2+z2=r2 3) d v = r 2 sin ⁡ φ d r   d θ d φ \mathrm{d} v=r^{2} \sin \varphi \mathrm{d} r \mathrm{~d} \theta \mathrm{d} \varphi dv=r2sinφdr dθdφ
    (2) ∭ Ω f ( x , y , z ) d v = ∭ Ω f ( r cos ⁡ θ sin ⁡ φ , r sin ⁡ θ sin ⁡ φ , r cos ⁡ φ ) r 2 sin ⁡ φ d r   d φ d θ \iiint_{\Omega} f(x, y, z) \mathrm{d} v=\iiint_{\Omega} f(r \cos \theta \sin \varphi, r \sin \theta \sin \varphi, r \cos \varphi) r^{2} \sin \varphi \mathrm{d} r \mathrm{~d} \varphi \mathrm{d} \theta Ωf(x,y,z)dv=Ωf(rcosθsinφ,rsinθsinφ,rcosφ)r2sinφdr dφdθ
    \quad 当被积函数中含有 x 2 + y 2 + z 2 x^{2}+y^{2}+z^{2} x2+y2+z2 或积分区域的边界曲面方程含有 x 2 + y 2 + z 2 x^{2}+y^{2}+z^{2} x2+y2+z2 时用 球坐标.
第三节 重积分的应用

一、几何应用

  1. 立体的体积
    (1) 以 z = f ( x , y ) ⩾ 0 z=f(x, y) \geqslant 0 z=f(x,y)0 为顶, D D D 为底的曲顶柱体的体积 V = ∬ D f ( x , y ) d σ V=\iint_{D} f(x, y) \mathrm{d} \sigma V=Df(x,y)dσ
    (2) 空间区域 Ω \Omega Ω 的体积 V Ω = ∬ Ω 1   d v . V_{\Omega}=\iint_{\Omega} 1 \mathrm{~d} v . VΩ=Ω1 dv.

  2. 曲面的面积 设曲面 S S S z = f ( x , y ) z=f(x, y) z=f(x,y) 给出, D D D 为曲面 S S S x O y x O y xOy 面上投影区域,则曲面 S S S 的面积
    S = ∬ D 1 + ( z x ′ ) 2 + ( z y ′ ) 2   d x   d y S=\iint_{D} \sqrt{1+\left(z_{x}^{\prime}\right)^{2}+\left(z_{y}^{\prime}\right)^{2}} \mathrm{~d} x \mathrm{~d} y S=D1+(zx)2+(zy)2  dx dy

二、物理应用

  1. 重心坐标
    (1) 平面薄片的重心
    设平面薄片占有 x O y x O y xOy 平面上的闭区域 D D D,其中任一点 ( x , y ) (x, y) (x,y) 处的面密度为 ρ ( x , y ) \rho(x, y) ρ(x,y) (假定
    ρ ( x , y ) \rho(x, y) ρ(x,y) D D D 上连续),则薄片的重心坐标为
    x ˉ = ∬ D x ρ ( x , y ) d σ ∬ D ρ ( x , y ) d σ , y ˉ = ∬ D y ρ ( x , y ) d σ ∫ D ρ ( x , y ) d σ \bar{x}=\frac{\iint_{D} x \rho(x, y) \mathrm{d} \sigma}{\iint_{D} \rho(x, y) \mathrm{d} \sigma}, \quad \bar{y}=\frac{\iint_{D} y \rho(x, y) \mathrm{d} \sigma}{\int_{D} \rho(x, y) \mathrm{d} \sigma} xˉ=Dρ(x,y)dσDxρ(x,y)dσ,yˉ=Dρ(x,y)dσDyρ(x,y)dσ
    (2)物体的重心
    设物体占有空间区域 Ω \Omega Ω,其中任一点 ( x , y , z ) (x, y, z) (x,y,z) 处的密度为 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) (假定 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) Ω \Omega Ω
    上连续), 则物体重心坐标为
    x ˉ = 1 M ∭ Ω x ρ ( x , y , z ) d v , y ˉ = 1 M ∭ Ω y ρ ( x , y , z ) d v , z ˉ = 1 M ∬ Ω z ρ ( x , y , z ) d v \bar{x}=\frac{1}{M} \iiint_{\Omega} x \rho(x, y, z) \mathrm{d} v, \quad \bar{y}=\frac{1}{M} \iiint_{\Omega} y \rho(x, y, z) \mathrm{d} v, \quad \bar{z}=\frac{1}{M} \iint_{\Omega} z \rho(x, y, z) \mathrm{d} v xˉ=M1Ωxρ(x,y,z)dv,yˉ=M1Ωyρ(x,y,z)dv,zˉ=M1Ωzρ(x,y,z)dv

其中 M = ∭ Ω ρ ( x , y , z ) d v M=\iiint_{\Omega} \rho(x, y, z) \mathrm{d} v M=Ωρ(x,y,z)dv

  1. 转动惯量
    (1)平面薄片的转动惯量 设平面薄片占有 x O y x \mathrm{Oy} xOy 平面上的闭区域 D D D,其中任一点( x , y ) x, y) x,y) 处的面密度为 ρ ( x , y ) \rho(x, y) ρ(x,y) (假定 ρ ( x , y ) \rho(x, y) ρ(x,y) D D D 上连续),则薄片

    x x x 轴的转动惯量 I x = ∬ D y 2 ρ ( x , y ) d x   d y I_{x}=\iint_{D} y^{2} \rho(x, y) \mathrm{d} x \mathrm{~d} y Ix=Dy2ρ(x,y)dx dy
    y y y 轴的转动惯量 I y = ∬ D x 2 ρ ( x , y ) d x   d y I_{y}=\iint_{D} x^{2} \rho(x, y) \mathrm{d} x \mathrm{~d} y Iy=Dx2ρ(x,y)dx dy
    对原点 O O O 的转动惯量 I O = ∬ D ( x 2 + y 2 ) ρ ( x , y ) d x   d y I_{O}=\iint_{D}\left(x^{2}+y^{2}\right) \rho(x, y) \mathrm{d} x \mathrm{~d} y IO=D(x2+y2)ρ(x,y)dx dy
    D D D 内任意直线 l l l 的转动惯量 I ℓ = ∬ D d 2 ρ ( x , y ) d x   d y , d I_{\ell}=\iint_{D} d^{2} \rho(x, y) \mathrm{d} x \mathrm{~d} y, d I=Dd2ρ(x,y)dx dy,d D D D ( x , y ) (x, y) (x,y) 点到直线 l l l 的距离.

    (2)物体的转动惯量. 设物体占有空间区域 Ω , \Omega, Ω, 其中任一点 ( x , y , z ) (x, y, z) (x,y,z) 处的密度为 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) (假定 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) Ω \Omega Ω 上连续),则物体转动惯量为

    x x x 轴的转动惯量 I x = ∭ Ω ( y 2 + z 2 ) ρ ( x , y , z ) d v I_{x}=\iiint_{\Omega}\left(y^{2}+z^{2}\right) \rho(x, y, z) \mathrm{d} v Ix=Ω(y2+z2)ρ(x,y,z)dv
    对原点 O O O 的转动惯量 I O = ∭ Ω ( x 2 + y 2 + z 2 ) ρ ( x , y , z ) d v I_{O}=\iiint_{\Omega}\left(x^{2}+y^{2}+z^{2}\right) \rho(x, y, z) \mathrm{d} v IO=Ω(x2+y2+z2)ρ(x,y,z)dv
    x O y x \mathrm{O} y xOy 面的转动惯量 I x y = ∬ Ω z 2 ρ ( x , y , z ) d v I_{x y}=\iint_{\Omega} z^{2} \rho(x, y, z) \mathrm{d} v Ixy=Ωz2ρ(x,y,z)dv
    Ω \Omega Ω 内任意直线 l l l 的转动惯量 I l = ∬ D d 2 ρ ( x , y , z ) d v , d I_{l}=\iint_{D} d^{2} \rho(x, y, z) \mathrm{d} v, d Il=Dd2ρ(x,y,z)dv,d Ω \Omega Ω ( x , y , z ) (x, y, z) (x,y,z) 点到直线 l l l 的距离.

  2. 引力
    (1) 平面薄片对质点的引力 设有一平面薄片占有 x O y x \mathrm{O} y xOy 平面上的闭区域 D . D . D. 在点 ( x , y ) (x, y) (x,y) 处的面密度为 ρ ( x , y ) ( \rho(x, y)( ρ(x,y)( 假定 ρ ( x , y ) \rho(x, y) ρ(x,y) D D D 上连续),则薄片对 z z z 轴上点 M 0 ( 0 , 0 , a ) M_{0}(0,0, a) M0(0,0,a) 处的质量为 m m m 的质点的引力为 F = ( F x , F y , F z ) \boldsymbol{F}=\left(F_{x}, F_{y}, F_{z}\right) F=(Fx,Fy,Fz)
    其中
    F x = Gm ⁡ ∬ D ρ ( x , y ) x ( x 2 + y 2 + a 2 ) 3 / 2   d σ F y = Gm ⁡ ∬ D ρ ( x , y ) y ( x 2 + y 2 + a 2 ) 3 / 2   d σ F z = Gm ⁡ ∬ D ρ ( x , y ) ( x 2 + y 2 + a 2 ) 3 / 2   d σ \begin{array}{l} F_{x}=\operatorname{Gm} \iint_{D} \frac{\rho(x, y) x}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} \sigma \\ F_{y}=\operatorname{Gm} \iint_{D} \frac{\rho(x, y) y}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} \sigma \\ F_{z}=\operatorname{Gm} \iint_{D} \frac{\rho(x, y)}{\left(x^{2}+y^{2}+a^{2}\right)^{3 / 2}} \mathrm{~d} \sigma \end{array} Fx=GmD(x2+y2+a2)3/2ρ(x,y)x dσFy=GmD(x2+y2+a2)3/2ρ(x,y)y dσFz=GmD(x2+y2+a2)3/2ρ(x,y) dσ
    (1) 物体对质点的引力

    设物体占有空间区域 Ω \Omega Ω,其中任一点 ( x , y , z ) (x, y, z) (x,y,z) 处的密度为 ρ ( x , y , z ) ( \rho(x, y, z)( ρ(x,y,z)( 假定 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) Ω \Omega Ω 上连续) , Ω , \Omega ,Ω 外有一点 M 0 ( x 0 , y 0 , z 0 ) , M_{0}\left(x_{0}, y_{0}, z_{0}\right), M0(x0,y0,z0), 其质量为 m m m,则物体对质点的引力为 F = ( F x , F y , F z ) , \boldsymbol{F}=\left(F_{x}, F_{y}, F_{z}\right), F=(Fx,Fy,Fz), 其中

F x = G m ∬ D ρ ( x , y , y ) ( x − x 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ] 3 / 2   d v F y = G m ∬ D ρ ( x , y , y ) ( y − y 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ] 3 / 2   d v F z = G m ∬ D ρ ( x , y , y ) ( z − z 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ] 3 / 2   d v \begin{array}{l} F_{x}=G m \iint_{D} \frac{\rho(x, y, y)\left(x-x_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{3 / 2}} \mathrm{~d} v \\ F_{y}=G m \iint_{D} \frac{\rho(x, y, y)\left(y-y_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{3 / 2}} \mathrm{~d} v \\ F_{z}=G m \iint_{D} \frac{\rho(x, y, y)\left(z-z_{0}\right)}{\left[\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{3 / 2}} \mathrm{~d} v \end{array} Fx=GmD[(xx0)2+(yy0)2+(zz0)2]3/2ρ(x,y,y)(xx0) dvFy=GmD[(xx0)2+(yy0)2+(zz0)2]3/2ρ(x,y,y)(yy0) dvFz=GmD[(xx0)2+(yy0)2+(zz0)2]3/2ρ(x,y,y)(zz0) dv

第十一章 曲线积分与曲面积分

第一节 对弧长的曲线积分(第一类曲线积分)

一、对弧长曲线积分的概念及性质

  1. 定义
    (1) L L L 为平面曲线
    ∫ L f ( x , y ) d s = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ s i , λ \int_{L} f(x, y) \mathrm{d} s=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \Delta s_{i}, \lambda Lf(x,y)ds=limλ0i=1nf(ξi,ηi)Δsi,λ 为各小弧段长度中的最大值.
    (2) Γ \Gamma Γ 为空间曲线
    ∫ Γ f ( x , y , z ) d s = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ s i , λ \int_{\Gamma} f(x, y, z) \mathrm{d} s=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta s_{i}, \lambda Γf(x,y,z)ds=limλ0i=1nf(ξi,ηi,ζi)Δsi,λ 为各小弧段长度中的最大值.

  2. 物理意义
    (1) 平面曲线的质量 M = ∫ l ρ ( x , y ) d s M=\int_{l} \rho(x, y) \mathrm{d} s M=lρ(x,y)ds
    (2) 空间曲线的质量 M = ∫ l ρ ( x , y , z ) d s M=\int_{l} \rho(x, y, z) \mathrm{d} s M=lρ(x,y,z)ds

  3. 性质
    (1) ∫ L [ k 1 f ( x , y ) ] ± k 2 g ( x , y ) ] d s = k 1 ∫ L f ( x , y ) d s ± k 2 ∫ L g ( x , y ) d s \left.\int_{L}\left[k_{1} f(x, y)\right] \pm k_{2} g(x, y)\right] \mathrm{d} s=k_{1} \int_{L} f(x, y) \mathrm{d} s \pm k_{2} \int_{L} g(x, y) \mathrm{d} s L[k1f(x,y)]±k2g(x,y)]ds=k1Lf(x,y)ds±k2Lg(x,y)ds
    (2) ∫ L = L 1 + L 2 f ( x , y ) d s = ∫ L 1 f ( x , y ) d s + ∫ L 2 f ( x , y ) d s \int_{L=L_{1}+L_{2}} f(x, y) \mathrm{d} s=\int_{L_{1}} f(x, y) \mathrm{d} s+\int_{L_{2}} f(x, y) \mathrm{d} s L=L1+L2f(x,y)ds=L1f(x,y)ds+L2f(x,y)ds

(3) ∫ L   d s = L \int_{L} \mathrm{~d} s=L L ds=L 的长度, ∫ Γ d s = Γ \int_{\Gamma} \mathrm{d} s=\Gamma Γds=Γ 的长度

  1. 利用奇偶函数及对称性化简
    (1) ∫ L f ( x , y ) d s = { 0 , f ( x , y )  关于  x  为奇函数  2 ∫ L 1 f ( x , y ) d s , f ( x , y )  关于  x  为偶函数  \int_{L} f(x, y) \mathrm{d} s=\left\{\begin{array}{ll}0, & f(x, y) \text { 关于 } x \text { 为奇函数 } \\ 2 \int_{L_{1}} f(x, y) \mathrm{d} s, & f(x, y) \text { 关于 } x \text { 为偶函数 }\end{array}\right. Lf(x,y)ds={0,2L1f(x,y)ds,f(x,y) 关于 x 为奇函数 f(x,y) 关于 x 为偶函数 
    其中 L L L 关于 y y y 轴对称, L 1 L_{1} L1 L L L x ⩾ 0 x \geqslant 0 x0 的部分.
    (2) ∫ L f ( x , y ) d s = { 0 , f ( x , y )  关于  y  为奇函数  2 ∫ L 1 f ( x , y ) d s , f ( x , y )  关于  y  为偶函数  \int_{L} f(x, y) \mathrm{d} s=\left\{\begin{array}{ll}0, & f(x, y) \text { 关于 } y \text { 为奇函数 } \\ 2 \int_{L_{1}} f(x, y) \mathrm{d} s, & f(x, y) \text { 关于 } y \text { 为偶函数 }\end{array}\right. Lf(x,y)ds={0,2L1f(x,y)ds,f(x,y) 关于 y 为奇函数 f(x,y) 关于 y 为偶函数 
    其中 L L L 关于 x x x 轴对称, L 1 L_{1} L1 L L L y ⩾ 0 y \geqslant 0 y0 的部分.

二、对弧长的 曲线积分的计算方法
(1) 井线 L L L 的方程为 { x = ψ ( t ) y = φ ( t ) , α ⩽ t ⩽ β , \left\{\begin{array}{l}x=\psi(t) \\ y=\varphi(t)\end{array}, \alpha \leqslant t \leqslant \beta,\right. {x=ψ(t)y=φ(t),αtβ,
∫ L f ( x , y ) d s = ∫ a β f [ ψ ( t ) , φ ( t ) ] [ ψ ′ ( t ) ] 2 + [ φ ′ ( t ) ] 2   d t \int_{L} f(x, y) \mathrm{d} s=\int_{a}^{\beta} f[\psi(t), \varphi(t)] \sqrt{\left[\psi^{\prime}(t)\right]^{2}+\left[\varphi^{\prime}(t)\right]^{2}} \mathrm{~d} t Lf(x,y)ds=aβf[ψ(t),φ(t)][ψ(t)]2+[φ(t)]2  dt
(2) 曲线 L L L 的方程为 y = φ ( x ) , a ⩽ x ⩽ b , y=\varphi(x), a \leqslant x \leqslant b, y=φ(x),axb,
∫ L f ( x , y ) d s = ∫ a b f [ x , φ ( x ) ] 1 + [ φ ′ ( x ) ] 2   d x \int_{L} f(x, y) \mathrm{d} s=\int_{a}^{b} f[x, \varphi(x)] \sqrt{1+\left[\varphi^{\prime}(x)\right]^{2}} \mathrm{~d} x Lf(x,y)ds=abf[x,φ(x)]1+[φ(x)]2  dx
(3) 曲线 L L L 的方程为 x = ψ ( y ) , c ⩽ y ⩽ d x=\psi(y), c \leqslant y \leqslant d x=ψ(y),cyd,则
∫ L f ( x , y ) d s = ∫ a b f [ ψ ( y ) , y ] 1 + [ ψ ′ ( y ) ] 2   d y \int_{L} f(x, y) \mathrm{d} s=\int_{a}^{b} f[\psi(y), y] \sqrt{1+\left[\psi^{\prime}(y)\right]^{2}} \mathrm{~d} y Lf(x,y)ds=abf[ψ(y),y]1+[ψ(y)]2  dy
(4) 曲线 L L L 的方程为 r = r ( θ ) , α ⩽ θ ⩽ β , r=r(\theta), \alpha \leqslant \theta \leqslant \beta, r=r(θ),αθβ,
∫ L f ( x , y ) d s = ∫ a β f [ r ( θ ) cos ⁡ θ + r ( θ ) sin ⁡ θ ] [ r ( θ ) ] 2 + [ r ′ ( θ ) ] 2   d t \int_{L} f(x, y) \mathrm{d} s=\int_{a}^{\beta} f[r(\theta) \cos \theta+r(\theta) \sin \theta] \sqrt{[r(\theta)]^{2}+\left[r^{\prime}(\theta)\right]^{2}} \mathrm{~d} t Lf(x,y)ds=aβf[r(θ)cosθ+r(θ)sinθ][r(θ)]2+[r(θ)]2  dt
(5) 空间曲线 Γ \Gamma Γ 的方程为 $\left{\begin{array}{l}x=x(t) \ y=y(t), \alpha \leqslant t \leqslant \beta, \text { 则 } \ z=z(t)\end{array}\right.
∫ Γ f ( x , y , z ) d s = ∫ a β f [ x ( t ) , y ( t ) , z ( t ) ] [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 + [ z ′ ( t ) ] 2   d t \int_{\Gamma} f(x, y, z) \mathrm{d} s=\int_{a}^{\beta} f[x(t), y(t), z(t)] \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} \mathrm{~d} t Γf(x,y,z)ds=aβf[x(t),y(t),z(t)][x(t)]2+[y(t)]2+[z(t)]2  dt

(1) 对弧长曲线积分计算转化为定积分来计算,且 α < β . \alpha<\beta . α<β.
(2) 被积函数是定义在曲线上, 因此可用曲线方程先对被积函数化简.

三、对弧长的曲线积分的应用

  1. 重心坐标
    (1) 平面曲线形物体的重心 设平面曲线形物体占有 x O y x O y xOy 平面上的弧段 L,其中任一点 ( x , y ) (x, y) (x,y) 处的线密度为 ρ ( x , y ) \rho(x, y) ρ(x,y) (假定 ρ ( x , y ) \rho(x, y) ρ(x,y) L L L 上连续),则曲线形物体的重心坐标为
    x ˉ = ∫ L x ρ ( x , y ) d s ∫ L ρ ( x , y ) d s , y ˉ = ∫ L y ρ ( x , y ) d s ∫ L ρ ( x , y ) d s \bar{x}=\frac{\int_{L} x \rho(x, y) \mathrm{d} s}{\int_{L} \rho(x, y) \mathrm{d} s}, \quad \bar{y}=\frac{\int_{L} y \rho(x, y) \mathrm{d} s}{\int_{L} \rho(x, y) \mathrm{d} s} xˉ=Lρ(x,y)dsLxρ(x,y)ds,yˉ=Lρ(x,y)dsLyρ(x,y)ds
    注 当 ρ ( x , y ) \rho(x, y) ρ(x,y) 为常数时, L L L 的重心就是 L L L 的形心,形心坐标为 x ˉ = ∫ L x   d s ∫ L 1   d s , y ˉ = ∫ L y   d s ∫ ℓ 1   d s \bar{x}=\frac{\int_{L} x \mathrm{~d} s}{\int_{L} 1 \mathrm{~d} s}, \bar{y}=\frac{\int_{L} y \mathrm{~d} s}{\int_{\ell} 1 \mathrm{~d} s} xˉ=L1 dsLx ds,yˉ=1 dsLy ds.

(2) 空间曲线形物体的重心
设空间曲线形物体占有空间弧段 Γ , \Gamma, Γ, 其中任一点 ( x , y , z ) (x, y, z) (x,y,z) 处的线密度为 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) (假定
ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) Γ \Gamma Γ 上连续),则空间曲线形物体的重心坐标为
x ˉ = ∫ Γ x ρ ( x , y , z ) d s ∫ Γ ρ ( x , y , z ) d s , y ˉ = ∫ Γ y ρ ( x , y , z ) d s ∫ Γ ρ ( x , y , z ) d s , z ˉ = ∫ Γ z ρ ( x , y , z ) d s ∫ Γ ρ ( x , y , z ) d s \bar{x}=\frac{\int_{\Gamma} x \rho(x, y, z) \mathrm{d} s}{\int_{\Gamma} \rho(x, y, z) \mathrm{d} s}, \quad \bar{y}=\frac{\int_{\Gamma} y \rho(x, y, z) \mathrm{d} s}{\int_{\Gamma} \rho(x, y, z) \mathrm{d} s}, \quad \bar{z}=\frac{\int_{\Gamma} z \rho(x, y, z) \mathrm{d} s}{\int_{\Gamma} \rho(x, y, z) \mathrm{d} s} xˉ=Γρ(x,y,z)dsΓxρ(x,y,z)ds,yˉ=Γρ(x,y,z)dsΓyρ(x,y,z)ds,zˉ=Γρ(x,y,z)dsΓzρ(x,y,z)ds
\quad ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) 为常数时, Γ \Gamma Γ 的重心就是 Γ \Gamma Γ 的形心,形心坐标为
x ˉ = ∫ Γ x   d s ∫ Γ 1   d s , y ˉ = ∫ Γ y   d s ∫ Γ 1   d s , z ˉ = ∫ Γ z   d s ∫ Γ 1   d s \bar{x}=\frac{\int_{\Gamma} x \mathrm{~d} s}{\int_{\Gamma} 1 \mathrm{~d} s}, \quad \bar{y}=\frac{\int_{\Gamma} y \mathrm{~d} s}{\int_{\Gamma} 1 \mathrm{~d} s}, \quad \bar{z}=\frac{\int_{\Gamma} z \mathrm{~d} s}{\int_{\Gamma} 1 \mathrm{~d} s} xˉ=Γ1 dsΓx ds,yˉ=Γ1 dsΓy ds,zˉ=Γ1 dsΓz ds

  1. 转动惯量
    (1)平面曲线形物体的转动惯量
    设平面曲线形物体占有 x O y x O y xOy 平面上的弧段 L L L,其中任一点 ( x , y ) (x, y) (x,y) 处的线密度为 ρ ( x , y ) \rho(x, y) ρ(x,y)(假定 ρ ( x , y ) \rho(x, y) ρ(x,y) L L L 上连续), 则曲线形物体的转动惯量为
    x x x 轴的转动惯量 I x = ∫ L y 2 ρ ( x , y ) d s I_{x}=\int_{L} y^{2} \rho(x, y) \mathrm{d} s Ix=Ly2ρ(x,y)ds
    y y y 轴的转动惯量 I y = ∫ L x 2 ρ ( x , y ) d s I_{y}=\int_{L} x^{2} \rho(x, y) \mathrm{d} s Iy=Lx2ρ(x,y)ds
    对原点 O O O 的转动惯量 I O = ∫ L ( x 2 + y 2 ) ρ ( x , y ) d s I_{O}=\int_{L}\left(x^{2}+y^{2}\right) \rho(x, y) \mathrm{d} s IO=L(x2+y2)ρ(x,y)ds
    (2) 空间曲线形物体的转动惯量 设空间曲线形物体占有空间弧段 Γ \Gamma Γ, 其中任一点 ( x , y , z ) (x, y, z) (x,y,z) 处的线密度为 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) (假定 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) Γ \Gamma Γ 上连续),则空间曲线形物体的转动惯量为

    x x x 轴的转动惯量 I x = ∫ Γ ( y 2 + z 2 ) ρ ( x , y , z ) d s , I_{x}=\int_{\Gamma}\left(y^{2}+z^{2}\right) \rho(x, y, z) \mathrm{d} s, Ix=Γ(y2+z2)ρ(x,y,z)ds,
    y y y 轴的转动惯量 I y = ∫ Γ ( z 2 + x 2 ) ρ ( x , y , z ) d s I_{y}=\int_{\Gamma}\left(z^{2}+x^{2}\right) \rho(x, y, z) \mathrm{d} s Iy=Γ(z2+x2)ρ(x,y,z)ds
    z z z 轴的转动惯量 I z = ∫ Γ ( x 2 + y 2 ) ρ ( x , y , z ) d s I_{z}=\int_{\Gamma}\left(x^{2}+y^{2}\right) \rho(x, y, z) \mathrm{d} s Iz=Γ(x2+y2)ρ(x,y,z)ds
    对原点 O O O 的转动惯量 I O = ∫ L ( x 2 + y 2 + z 2 ) ρ ( x , y , z ) d s . I_{O}=\int_{L}\left(x^{2}+y^{2}+z^{2}\right) \rho(x, y, z) \mathrm{d} s . IO=L(x2+y2+z2)ρ(x,y,z)ds.

    对任意直线 l l l 的转动惯量 I l = ∫ L d 2 ρ ( x , y , z ) d s , d I_{l}=\int_{L} d^{2} \rho(x, y, z) \mathrm{d} s, d Il=Ld2ρ(x,y,z)ds,d Γ \Gamma Γ ( x , y , z ) (x, y, z) (x,y,z) 点到直线 l l l 的距离.

第二节 对坐标的曲线积分

一、对坐标曲线积分的概念及性质

  1. 定义
    (1) L 是平請有京曲线
    ∫ L P ( x , y ) d x = lim ⁡ λ → 0 ∑ i = 1 n P ( ξ i , η i ) Δ x i , λ \int_{L} P(x, y) \mathrm{d} x=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} P\left(\xi_{i}, \eta_{i}\right) \Delta x_{i}, \lambda LP(x,y)dx=limλ0i=1nP(ξi,ηi)Δxi,λ 为各小弧段长度中的噬大值.
    ∫ L Q ( x , y ) d y = lim ⁡ λ → 0 ∑ i = 1 n Q ( ξ i , η i ) Δ y i , λ \int_{L} Q(x, y) \mathrm{d} y=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} Q\left(\xi_{i}, \eta_{i}\right) \Delta y_{i}, \lambda LQ(x,y)dy=limλ0i=1nQ(ξi,ηi)Δyi,λ 为各小弧既长度中的最大值.
    ∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ L P ( x , y ) d x + ∫ L Q ( x , y ) d y \int_{L} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=\int_{L} P(x, y) \mathrm{d} x+\int_{L} Q(x, y) \mathrm{d} y LP(x,y)dx+Q(x,y)dy=LP(x,y)dx+LQ(x,y)dy
    (2) Γ \Gamma Γ 是空间有向其线
    ∫ Γ P ( x , y , z ) d s = lim ⁡ λ → 0 ∑ i = 1 n P ( ξ i , η i , ζ i ) Δ x i , λ \int_{\Gamma} P(x, y, z) \mathrm{d} s=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} P\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta x_{i}, \lambda ΓP(x,y,z)ds=limλ0i=1nP(ξi,ηi,ζi)Δxi,λ 为各小弧段长度中的疫大值.
    ∫ Γ Q ( x , y , z ) d s = lim ⁡ λ → 0 ∑ i = 1 n Q ( ξ i , η i , ζ i ) Δ y i , λ \int_{\Gamma} Q(x, y, z) \mathrm{d} s=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} Q\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta y_{i}, \lambda ΓQ(x,y,z)ds=limλ0i=1nQ(ξi,ηi,ζi)Δyi,λ 为各小弧段长度中的最大值.
    ∫ Γ R ( x , y , z ) d s = lim ⁡ λ → 0 ∑ i = 1 n R ( ξ i , η i , ζ i ) Δ z i , λ \int_{\Gamma} R(x, y, z) \mathrm{d} s=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} R\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta z_{i}, \lambda ΓR(x,y,z)ds=limλ0i=1nR(ξi,ηi,ζi)Δzi,λ 为各小弧段长度中的最大值.

∫ Γ P ( x , y , z ) d x + Q ( x , y , z ) d y + R ( x , y , z ) d z = ∫ Γ P ⋅ d x + ∫ Γ Q ⋅ d y + ∫ Γ R ⋅ d z \quad \int_{\Gamma} P(x, y, z) \mathrm{d} x+Q(x, y, z) \mathrm{d} y+R(x, y, z) \mathrm{d} z=\int_{\Gamma} P \cdot \mathrm{d} x+\int_{\Gamma} Q \cdot \mathrm{d} y+\int_{\Gamma} R \cdot \mathrm{d} z ΓP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=ΓPdx+ΓQdy+ΓRdz

  1. 物理意义
    (1) ∫ L P   d x + Q   d y \int_{L} P \mathrm{~d} x+Q \mathrm{~d} y LP dx+Q dy 表示 : 力 F = P ( x , y ) ⋅ i + Q ( x , y ) ⋅ j \boldsymbol{F}=P(x, y) \cdot \boldsymbol{i}+Q(x, y) \cdot j F=P(x,y)i+Q(x,y)j 在曲线 L L L 上由 A A A B B B 所做功.
    (2) ∫ Γ P   d x + Q   d y + R   d z \int_{\Gamma} P \mathrm{~d} x+Q \mathrm{~d} y+R \mathrm{~d} z ΓP dx+Q dy+R dz 表示 : 力 F = P ( x , y , z ) ⋅ i + Q ( x , y , z ) ⋅ j + R ( x , y , z ) ⋅ k \boldsymbol{F}=P(x, y, z) \cdot \boldsymbol{i}+Q(x, y, z) \cdot \boldsymbol{j}+R(x, y, z) \cdot \boldsymbol{k} F=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k
    曲线 Γ \Gamma Γ 上古 A A A B B B 所做功.

  2. 性质
    (1) ∫ L = L 1 + L 2 P ⋅ d x + Q ⋅ d y = ∫ L 1 P ⋅ d x + Q ⋅ d y + ∫ L 2 P ⋅ d x + Q ⋅ d y \int_{L=L_{1}+L_{2}} P \cdot \mathrm{d} x+Q \cdot \mathrm{d} y=\int_{L_{1}} P \cdot \mathrm{d} x+Q \cdot \mathrm{d} y+\int_{L_{2}} P \cdot \mathrm{d} x+Q \cdot \mathrm{d} y L=L1+L2Pdx+Qdy=L1Pdx+Qdy+L2Pdx+Qdy
    (2) ∫ . L P ⋅ d x + Q ⋅ d y = − ∫ L P ⋅ d x + Q ⋅ d y \int_{._{L}} P \cdot \mathrm{d} x+Q \cdot \mathrm{d} y=-\int_{L} P \cdot \mathrm{d} x+Q \cdot \mathrm{d} y .LPdx+Qdy=LPdx+Qdy

二、对坐标曲线积分的计算方法
(1) 曲线 L L L 的方程为 { x = x ( t ) y = y ( t ) , t : α → β , \left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array}, t: \alpha \rightarrow \beta,\right. {x=x(t)y=y(t),t:αβ,
∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ a β { P [ ( x ( t ) , y ( t ) ] x ′ ( t ) + Q [ x ( t ) , y ( t ) ] y ′ ( t ) } d t \int_{L} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=\int_{a}^{\beta}\left\{P\left[(x(t), y(t)] x^{\prime}(t)+Q[x(t), y(t)] y^{\prime}(t)\right\} \mathrm{d} t\right. LP(x,y)dx+Q(x,y)dy=aβ{P[(x(t),y(t)]x(t)+Q[x(t),y(t)]y(t)}dt
(2) 曲线 L L L 的方程为 y = y ( x ) , x : a → b , y=y(x), x: a \rightarrow b, y=y(x),x:ab,
∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ a β { P [ x , y ( x ) ] + Q [ x , y ( x ) ] y ′ ( x ) } d x \int_{L} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=\int_{a}^{\beta}\left\{P[x, y(x)]+Q[x, y(x)] y^{\prime}(x)\right\} \mathrm{d} x LP(x,y)dx+Q(x,y)dy=aβ{P[x,y(x)]+Q[x,y(x)]y(x)}dx
(3) 曲线 L L L 的方程为 x = x ( y ) , y : c → d x=x(y), y: c \rightarrow d x=x(y),y:cd, 则
∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ a β { P [ x ( y ) , y ] x ′ ( y ) + Q [ x ( y ) , y ] } d y \int_{L} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=\int_{a}^{\beta}\left\{P[x(y), y] x^{\prime}(y)+Q[x(y), y]\right\} \mathrm{d} y LP(x,y)dx+Q(x,y)dy=aβ{P[x(y),y]x(y)+Q[x(y),y]}dy
(4) 空间曲线 Γ \Gamma Γ 的方程为 { x = x ( t ) y = y ( t ) , t : α → β ,  则  z = z ( t ) \left\{\begin{array}{l}x=x(t) \\ y=y(t), t: \alpha \rightarrow \beta, \text { 则 } \\ z=z(t)\end{array}\right. x=x(t)y=y(t),t:αβ,  z=z(t)
∫ Γ P ( x , y , z ) d x + Q ( x , y , z ) d y + R ( x , y , z ) d z = ∫ a β { P [ x ( t ) , y ( t ) , z ( t ) ] } x ′ ( t ) + Q [ x ( t ) , y ( t ) , z ( t ) ] y ′ ( t ) + R [ x ( t ) , y ( t ) , z ( t ) ] z ′ ( t ) } d t . \int_{\Gamma} P(x, y, z) \mathrm{d} x+Q(x, y, z) \mathrm{d} y+R(x, y, z) \mathrm{d} z\begin{array}{l}=\int_{a}^{\beta}\{P[x(t), y(t), z(t)]\} x^{\prime}(t)+Q[x(t), y(t), z(t)] y^{\prime}(t) \\ \left.+R[x(t), y(t), z(t)] z^{\prime}(t)\right\} \mathrm{d} t .\end{array} ΓP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=aβ{P[x(t),y(t),z(t)]}x(t)+Q[x(t),y(t),z(t)]y(t)+R[x(t),y(t),z(t)]z(t)}dt.


(1) 对坐标的曲 线积分转化为定积分来计算, 且 α \alpha α 是起点参数, β \beta β 是终,点参数
(2) 被积函数是定义在曲线上,因此可用曲线方程先对被积函数化简.

三 、两类曲线 积分之 间的联系
∫ L P   d x + Q   d y = ∫ L ( P cos ⁡ α + Q cos ⁡ β ) d s \int_{L} P \mathrm{~d} x+Q \mathrm{~d} y=\int_{L}(P \cos \alpha+Q \cos \beta) \mathrm{d} s LP dx+Q dy=L(Pcosα+Qcosβ)ds
其中 cos ⁡ α , cos ⁡ β \cos \alpha, \cos \beta cosα,cosβ 是有向曲线 弧 L L L 上任一点 ( x , y ) (x, y) (x,y) 处的切向量的方向余弘.

四、格林公式

  1. 格林公式
    设闭区域 D D D 由分段光滑的曲线 L L L 围成,函数 P ( x , y ) , Q ( x , y ) P(x, y), Q(x, y) P(x,y),Q(x,y) D D D 上具有一阶连续偏导数, 则 ∮ L P ( x , y ) d x + Q ( x , y ) d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x   d y , \oint_{L} P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y, LP(x,y)dx+Q(x,y)dy=D(xQyP)dx dy, 其中 L L L D D D 的正向边界曲线.

注 (1) D D D 可以是单连通区域也可以 D D D 是复连通区域.
(2) 定理的条件: 用二重积分计算第二类曲线积分时,第二类曲线积分只定义在 D D D
的边界上,这时常易忽略 P ( x , y ) , Q ( x , y ) P(x, y), Q(x, y) P(x,y),Q(x,y) D D D 的内部是否有定义及是否具有一
续偏 导数.

总结
(1) 对平面曲线的第二类曲线积分有二种方法计算:定义法和格林公式法.
(2) 对空间曲线的第二类曲线积分有二种方法计算:定义法和斯托克斯公式.

  1. 平面上曲线积分与路径无关的充要条件
    (1) 曲线积分与路径无关的定义

    ​ 设 G G G 是区域, 函数 P ( x , y ) , Q ( x , y ) P(x, y), Q(x, y) P(x,y),Q(x,y) 在区域 G G G 内具有一阶连续偏导数,如果对于 G G G 内任意 两点 A , B A, B A,B 以及 G G G 内从点 A A A 到点 B B B 的任意两条曲线 L 1 , L 2 L_{1}, L_{2} L1,L2 恒成立 ∫ L 1 P   d x + Q   d y = ∫ L 2 Pd ⁡ x + \int_{L_{1}} P \mathrm{~d} x+Q \mathrm{~d} y=\int_{L_{2}} \operatorname{Pd} x+ L1P dx+Q dy=L2Pdx+ Q   d y , Q \mathrm{~d} y, Q dy, 则称 ∫ L P   d x + Q   d y \int_{L} P \mathrm{~d} x+Q \mathrm{~d} y LP dx+Q dy G G G 内与路径无关,否则有关.

    \quad 曲线积分 ∫ L P   d x + Q   d y \int_{L} P \mathrm{~d} x+Q \mathrm{~d} y LP dx+Q dy G G G 内与路径无关五沿 G G G 内任意闭曲线 C C C 的曲线积分 ∫ C P   d x + Q   d y = 0 \int_{C} P \mathrm{~d} x+Q \mathrm{~d} y=0 CP dx+Q dy=0
    (2)平面上曲线积分与路径无关的充要条件

    ​ 设函数 P ( x , y ) , Q ( x , y ) P(x, y), Q(x, y) P(x,y),Q(x,y) 在单连通域 G G G 内具有一阶连续偏导数,则曲线积分 ∫ L P   d x + Q   d y \int_{L} P \mathrm{~d} x+Q \mathrm{~d} y LP dx+Q dy
    G G G 内与路径无关的充分必要条件是等式 ∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} yP=xQ G G G 内恒成立.

    \quad 要求区域 G G G 是单连通区域,且函数 P ( x , y ) , Q ( x , y ) P(x, y), Q(x, y) P(x,y),Q(x,y) G G G 内具有一阶连续偏导数. 如果这两个条件之一不能满足,那么定理的结论不能保证成立.

  2. 一元函数全微分的原函数
    设函数 P ( x , y ) , Q ( x , y ) P(x, y), Q(x, y) P(x,y),Q(x,y) 在单连通区域 G G G 内有一阶连续偏导数, 则 P ( x , y ) d x + Q ( x , y ) d y P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y P(x,y)dx+Q(x,y)dy G G G 内为某一函数 u ( x , y ) u(x, y) u(x,y) 的全微分 ( ( ( d u = P ( x , y ) d x + Q ( x , y ) d y ) \mathrm{d} u=P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y) du=P(x,y)dx+Q(x,y)dy) 的充分必要条件是等
    ∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} yP=xQ G G G 内恒成立.
    KaTeX parse error: Can't use function '$' in math mode at position 2: $̲\begin{aligned}…

    (1) 要求区域 G G G 是单连通区域且函数 P ( x , y ) , Q ( x , y ) P(x, y), Q(x, y) P(x,y),Q(x,y) G G G 内具有一状连续偏寺数. 否则不能保证结论成立.
    (2) P ( x , y ) d x + Q ( x , y ) d y = 0 P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=0 P(x,y)dx+Q(x,y)dy=0 是全徵分方程的充要条件是在 G G G 内处处有 ∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} yP=xQ.
    (解为 : u ( x , y ) = ∫ x 0 x P ( x , y 0 ) d x + ∫ y 0 y Q ( x , y ) d y + C ) \left.: u(x, y)=\int_{x_{0}}^{x} P\left(x, y_{0}\right) \mathrm{d} x+\int_{y_{0}}^{y} Q(x, y) \mathrm{d} y+C\right) :u(x,y)=x0xP(x,y0)dx+y0yQ(x,y)dy+C)
    (3) d u = P ( x , y ) d x + Q ( x , y ) d y , \mathrm{d} u=P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y, du=P(x,y)dx+Q(x,y)dy, 计算 u ( x , y ) u(x, y) u(x,y) 的另 外一种方法

    d u = ∂ u ∂ x   d x + ∂ u ∂ y   d y ⟹ ∂ u ∂ x = P ( x , y ) , ∂ u ∂ y = Q ( x , y ) \mathrm{d} u=\frac{\partial u}{\partial x} \mathrm{~d} x+\frac{\partial u}{\partial y} \mathrm{~d} y \Longrightarrow \frac{\partial u}{\partial x}=P(x, y), \frac{\partial u}{\partial y}=Q(x, y) \quad du=xu dx+yu dyxu=P(x,y),yu=Q(x,y) 解方程即可以.

第三节 对面积的曲面积分

一、对面积的曲面积分的概念及性质

  1. 定义
    ∬ Σ f ( x , y , z ) d S = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ S i , λ \iint_{\Sigma} f(x, y, z) \mathrm{d} S=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} f\left(\xi_{i}, \eta_{i}, \zeta_{i}\right) \Delta S_{i}, \lambda Σf(x,y,z)dS=limλ0i=1nf(ξi,ηi,ζi)ΔSi,λ 为各小企曲面的直径中的最大值.
  2. 几何意义与物理意义
    (1) 几何意义: 曲面的面积 S Σ = ∬ Σ d S S_{\Sigma}=\iint_{\Sigma} \mathrm{d} S SΣ=ΣdS
    (2) 物理意义: 曲面的质量 M = ∬ Σ ρ ( x , y , z ) d S M=\iint_{\Sigma} \rho(x, y, z) \mathrm{d} S M=Σρ(x,y,z)dS
  3. 性质
    (1) ∬ Σ ( k 1 f ( x , y , z ) + k 2 g ( x , y , z ) ) d S = k 1 ∬ Σ f ( x , y , z ) d S + k 2 ∬ Σ 2 g ( x , y , z ) d S \iint_{\Sigma}\left(k_{1} f(x, y, z)+k_{2} g(x, y, z)\right) \mathrm{d} S=k_{1} \iint_{\Sigma} f(x, y, z) \mathrm{d} S+k_{2} \iint_{\Sigma_{2}} g(x, y, z) \mathrm{d} S Σ(k1f(x,y,z)+k2g(x,y,z))dS=k1Σf(x,y,z)dS+k2Σ2g(x,y,z)dS
    (2) ∬ Σ 1 + Σ 2 f ( x , y , z ) d S = ∬ Σ 1 f ( x , y , z ) d S + ∬ Σ 2 f ( x , y , z ) d S \iint_{\Sigma_{1}+\Sigma_{2}} f(x, y, z) \mathrm{d} S=\iint_{\Sigma_{1}} f(x, y, z) \mathrm{d} S+\iint_{\Sigma_{2}} f(x, y, z) \mathrm{d} S Σ1+Σ2f(x,y,z)dS=Σ1f(x,y,z)dS+Σ2f(x,y,z)dS
  4. 利用奇偶函数及对称性化简

∬ Σ f ( x , y , z ) d S = { 0 , f ( x , y , z )  关于  z  是奇函数  2 ∬ Σ 1 f ( x , y , z ) d S , f ( x , y , z )  关于  z  是偶函数  \iint_{\Sigma} f(x, y, z) \mathrm{d} S=\left\{\begin{array}{ll} 0, & f(x, y, z) \text { 关于 } z \text { 是奇函数 } \\ 2 \iint_{\Sigma_{1}} f(x, y, z) \mathrm{d} S, & f(x, y, z) \text { 关于 } z \text { 是偶函数 } \end{array}\right. Σf(x,y,z)dS={0,2Σ1f(x,y,z)dS,f(x,y,z) 关于 z 是奇函数 f(x,y,z) 关于 z 是偶函数 
​ 其中 Σ \Sigma Σ 关于 x O y x O y xOy 面对称, Σ 1 \Sigma_{1} Σ1 Σ \Sigma Σ z ⩾ 0 z \geqslant 0 z0 的部分.

二、对面积的曲面积分的计算方法
(1) Σ : z = z ( x , y ) , Σ \Sigma: z=z(x, y), \Sigma Σ:z=z(x,y),Σ x O y x O y xOy 面的投影 [ \left[\right. [ 区域 D x y D_{x y} Dxy
∬ Σ f ( x , y , z ) d S = ∬ D x y f ( x , y , z ( x , y ) ) 1 + z x 2 + z y 2   d x   d y \iint_{\Sigma} f(x, y, z) \mathrm{d} S=\iint_{D_{x y}} f(x, y, z(x, y)) \sqrt{1+z_{x}^{2}+z_{y}^{2}} \mathrm{~d} x \mathrm{~d} y Σf(x,y,z)dS=Dxyf(x,y,z(x,y))1+zx2+zy2  dx dy
(2) Σ : x = x ( y , z ) , Σ \Sigma: x=x(y, z), \Sigma Σ:x=x(y,z),Σ y O z y O z yOz 面的投影区域 D y z D_{y z} Dyz
∬ Σ f ( x , y , z ) d S = ∬ D y z f ( x ( y , z ) , y , z ) 1 + x y 2 + x z 2   d y   d z \iint_{\Sigma} f(x, y, z) \mathrm{d} S=\iint_{D_{y z}} f(x(y, z), y, z) \sqrt{1+x_{y}^{2}+x_{z}^{2}} \mathrm{~d} y \mathrm{~d} z Σf(x,y,z)dS=Dyzf(x(y,z),y,z)1+xy2+xz2  dy dz
(3) Σ : y = y ( x , z ) , Σ \Sigma: y=y(x, z), \Sigma Σ:y=y(x,z),Σ x O z x \mathrm{Oz} xOz 面的投影区域 D x z D_{x z} Dxz
∬ Σ f ( x , y , z ) d S = ∬ D x z f ( x , y ( x , z ) , z ) 1 + y x 2 + y z 2   d x   d z \iint_{\Sigma} f(x, y, z) \mathrm{d} S=\iint_{D_{x z}} f(x, y(x, z), z) \sqrt{1+y_{x}^{2}+y_{z}^{2}} \mathrm{~d} x \mathrm{~d} z Σf(x,y,z)dS=Dxzf(x,y(x,z),z)1+yx2+yz2  dx dz
\quad 被积函数 f ( x , y , z ) f(x, y, z) f(x,y,z) 定义在 Σ \Sigma Σ 上, 可用 Σ \Sigma Σ 方程化简 f ( x , y , x ) f(x, y, x) f(x,y,x),简化计算.

三、对面积的曲 面积分的壮用

  1. 重心坐标
    设曲面形物体七有出面 Σ , \Sigma, Σ, 其中任一点 ( x , y , z ) (x, y, z) (x,y,z) 处的面密度为 ρ ( x , y , z ) ( \rho(x, y, z)( ρ(x,y,z)( 假定 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z)
    Σ \Sigma Σ 上连续),则曲胡形物体的重心坐标为
    x ˉ = ∬ Σ x ρ ( x , y , z ) d S ∬ Σ ρ ( x , y , z ) d S , y ˉ = ∬ y ρ ( x , y , z ) d S ∬ Σ ρ ( x , y , z ) d S , z ˉ = ∬ Σ z ρ ( x , y , z ) d S ∬ Σ ρ ( x , y , z ) d S \bar{x}=\frac{\iint_{\Sigma} x \rho(x, y, z) \mathrm{d} S}{\iint_{\Sigma} \rho(x, y, z) \mathrm{d} S}, \quad \bar{y}=\frac{\iint y \rho(x, y, z) \mathrm{d} S}{\iint_{\Sigma} \rho(x, y, z) \mathrm{d} S}, \quad \bar{z}=\frac{\iint_{\Sigma} z \rho(x, y, z) \mathrm{d} S}{\iint_{\Sigma} \rho(x, y, z) \mathrm{d} S} xˉ=Σρ(x,y,z)dSΣxρ(x,y,z)dS,yˉ=Σρ(x,y,z)dSyρ(x,y,z)dS,zˉ=Σρ(x,y,z)dSΣzρ(x,y,z)dS
    江 当 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) 为常 数时, Σ \Sigma Σ 的重心就是 Σ \Sigma Σ 的形心, 形心坐标为
    x ˉ = ∬ Σ x   d S ∬ Σ d S , y ¨ = ∬ y   d S ∬ Σ d S , z ˉ = ∬ z   d S ∬ Σ d S \bar{x}=\frac{\iint_{\Sigma} x \mathrm{~d} S}{\iint_{\Sigma} \mathrm{d} S}, \quad \ddot{y}=\frac{\iint y \mathrm{~d} S}{\iint_{\Sigma} \mathrm{d} S}, \quad \bar{z}=\frac{\iint z \mathrm{~d} S}{\iint_{\Sigma} \mathrm{d} S} xˉ=ΣdSΣx dS,y¨=ΣdSy dS,zˉ=ΣdSz dS

  2. 转动惯量

    设曲面形物体占有空间 曲面 Σ , \Sigma, Σ, 其中任一点 ( x , y , z ) (x, y, z) (x,y,z) 处的面 密度为 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) (假定 ρ ( x , y , z ) \rho(x, y, z) ρ(x,y,z) Σ \Sigma Σ 上连续),则曲面形物体的转动惯里为 对 x x x 轴的转动惯量 I x = ∬ Σ ( y 2 + z 2 ) ρ ( x , y , z ) d S I_{x}=\iint_{\Sigma}\left(y^{2}+z^{2}\right) \rho(x, y, z) \mathrm{dS} Ix=Σ(y2+z2)ρ(x,y,z)dS
    x O y x O y xOy 轴的转动惯量 I x y = ∬ Σ z 2 ρ ( x , y , z ) d S I_{x y}=\iint_{\Sigma} z^{2} \rho(x, y, z) \mathrm{d} S Ixy=Σz2ρ(x,y,z)dS,
    对原点 O O O 的转动惯量 I O = ∬ Σ ( x 2 + y 2 + z 2 ) ρ ( x , y , z ) d S , I_{O}=\iint_{\Sigma}\left(x^{2}+y^{2}+z^{2}\right) \rho(x, y, z) \mathrm{d} S, IO=Σ(x2+y2+z2)ρ(x,y,z)dS,
    对任意直线 l l l 的转动惯量 I l = ∬ Σ d 2 ρ ( x , y , z ) d S , d I_{l}=\iint_{\Sigma} d^{2} \rho(x, y, z) \mathrm{d} S, d Il=Σd2ρ(x,y,z)dS,d Σ 上 ( x , y , z ) \Sigma 上(x, y, z) Σ(x,y,z) 点到直线 l l l 的距离.

第四节 对坐标的曲面积分

一、对坐标的曲 面积分的概念及性质

  1. 定义
    ∬ Σ R ( x , y , z ) d x   d y = lim ⁡ i → 0 ∑ i = 1 n R ( ξ i , η i , ζ i ) ( Δ S i ) x y ∬ Σ P ( x , y , z ) d y   d z = lim ⁡ λ → 0 ∑ i = 1 n P ( ξ i , η i , ζ i ) ( Δ S i ) y z ∬ Σ Q ( x , y , z ) d x   d z = lim ⁡ λ → 0 ∑ i = 1 n Q ( ξ i , η i , ζ i ) ( Δ S i ) x z \begin{array}{l} \iint_{\Sigma} R(x, y, z) \mathrm{d} x \mathrm{~d} y=\lim _{i \rightarrow 0} \sum_{i=1}^{n} R\left(\xi_{i}, \eta_{i}, \zeta_{i}\right)\left(\Delta S_{i}\right)_{x y} \\ \iint_{\Sigma} P(x, y, z) \mathrm{d} y \mathrm{~d} z=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} P\left(\xi_{i}, \eta_{i}, \zeta_{i}\right)\left(\Delta S_{i}\right)_{y z} \\ \iint_{\Sigma} \boldsymbol{Q}(x, y, z) \mathrm{d} x \mathrm{~d} z=\lim _{\lambda \rightarrow 0} \sum_{i=1}^{n} Q\left(\xi_{i}, \eta_{i}, \zeta_{i}\right)\left(\Delta S_{i}\right)_{x z} \end{array} ΣR(x,y,z)dx dy=limi0i=1nR(ξi,ηi,ζi)(ΔSi)xyΣP(x,y,z)dy dz=limλ0i=1nP(ξi,ηi,ζi)(ΔSi)yzΣQ(x,y,z)dx dz=limλ0i=1nQ(ξi,ηi,ζi)(ΔSi)xz
    λ \lambda λ 为各小块曲面的直径中的最大值.
     注  ∬ Σ P   d y   d z + Q   d x   d z + R   d x   d y = ∬ Σ P ( x , y , z ) d y   d z + ∬ Σ Q ( x , y , z ) d x   d z + ∬ Σ R ( x , y , z ) d x   d y \text { 注 } \iint_{\Sigma} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} x \mathrm{~d} z+R \mathrm{~d} x \mathrm{~d} y=\iint_{\Sigma} P(x, y, z) \mathrm{d} y \mathrm{~d} z+\iint_{\Sigma} Q(x, y, z) \mathrm{d} x \mathrm{~d} z+\iint_{\Sigma} R(x, y, z) \mathrm{d} x \mathrm{~d} y   ΣP dy dz+Q dx dz+R dx dy=ΣP(x,y,z)dy dz+ΣQ(x,y,z)dx dz+ΣR(x,y,z)dx dy

  2. 性压

 (1)  ∬ x = Σ 1 + Σ 2 P   d y   d z + Q   d x   d z + R   d x   d y = ∬ Σ 1 P   d y   d z + Q   d x   d z + R   d x   d y + ∬ Σ 2 P   d y   d z + Q   d x   d z + \text { (1) } \iint_{x=\Sigma_{1}+\Sigma_{2}} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} x \mathrm{~d} z+R \mathrm{~d} x \mathrm{~d} y=\iint_{\Sigma_{1}} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} x \mathrm{~d} z+R \mathrm{~d} x \mathrm{~d} y+\iint_{\Sigma_{2}} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} x \mathrm{~d} z+  (1) x=Σ1+Σ2P dy dz+Q dx dz+R dx dy=Σ1P dy dz+Q dx dz+R dx dy+Σ2P dy dz+Q dx dz+
R   d x   d y R \mathrm{~d} x \mathrm{~d} y R dx dy
 (2)  ∬ − Σ P   d y   d z + Q   d x   d z + R   d x   d y = − ∬ Σ P   d y   d z + Q   d x   d z + R   d x   d y \text { (2) } \iint_{-\Sigma} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} x \mathrm{~d} z+R \mathrm{~d} x \mathrm{~d} y=-\iint_{\Sigma} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} x \mathrm{~d} z+R \mathrm{~d} x \mathrm{~d} y  (2) ΣP dy dz+Q dx dz+R dx dy=ΣP dy dz+Q dx dz+R dx dy
二、对坐标的 曲 面积分的计篇方法
(1) 曲面 Σ \Sigma Σ 方程为 z = z ( x , y ) , z=z(x, y), z=z(x,y), ∬ Σ R ( x , y , z ) d x   d y = z = z ( x , y ) ± ∬ D x y R [ x , y , z ( x , y ) ] d x   d y , \iint_{\Sigma} R(x, y, z) \mathrm{d} x \mathrm{~d} y \stackrel{z=z(x, y)}{=} \pm \iint_{D_{x y}} R[x, y, z(x, y)] \mathrm{d} x \mathrm{~d} y, ΣR(x,y,z)dx dy=z=z(x,y)±DxyR[x,y,z(x,y)]dx dy, 其中
止面 Σ \Sigma Σ 取上侧时,则取正号;曲 面 Σ \Sigma Σ 取下侧时,则取负号。

(2) 曲面 Σ \Sigma Σ 方程为 y = y ( x , z ) , y=y(x, z), y=y(x,z), ∬ Σ Q ( x , y , z ) d z   d x = y = y ( x , z ) ± ∬ D x z Q [ x , y ( x , z ) , z ] d z   d x , \iint_{\Sigma} Q(x, y, z) \mathrm{d} z \mathrm{~d} x \stackrel{y=y(x, z)}{=} \pm \iint_{D_{x z}} Q[x, y(x, z), z] \mathrm{d} z \mathrm{~d} x, ΣQ(x,y,z)dz dx=y=y(x,z)±DxzQ[x,y(x,z),z]dz dx,
中,曲面 Σ \Sigma Σ 取右侧时,则取正号 ; 曲面 Σ \Sigma Σ 取左侧时,则取负号.

(3) 曲面 Σ \Sigma Σ 方程为 x = x ( y , z ) , x=x(y, z), x=x(y,z), ∬ Σ P ( x , y , z ) d y   d z = x = x ( y , z ) ± ∬ D y x P [ x ( y , z ) , y , z ] d y   d z , \iint_{\Sigma} P(x, y, z) \mathrm{d} y \mathrm{~d} z \stackrel{x=x(y, z)}{=} \pm \iint_{D_{y x}} P[x(y, z), y, z] \mathrm{d} y \mathrm{~d} z, ΣP(x,y,z)dy dz=x=x(y,z)±DyxP[x(y,z),y,z]dy dz,
中,曲面 Σ \Sigma Σ 取前侧时,则取正号;曲面 Σ \Sigma Σ 取后侧时,则取贞号.

三、两类曲面积分之间的联系
∬ Σ P   d y   d z + Q   d z   d x + R   d x   d y = ∬ Σ ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ) d S = ∬ Σ ( P cos ⁡ α cos ⁡ γ + Q cos ⁡ β cos ⁡ γ + R ) d x   d y \begin{array}{l} \iint_{\Sigma} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} z \mathrm{~d} x+R \mathrm{~d} x \mathrm{~d} y=\iint_{\Sigma}(P \cos \alpha+Q \cos \beta+R \cos \gamma) \mathrm{d} S \\ =\iint_{\Sigma}\left(P \frac{\cos \alpha}{\cos \gamma}+Q \frac{\cos \beta}{\cos \gamma}+R\right) \mathrm{d} x \mathrm{~d} y \end{array} ΣP dy dz+Q dz dx+R dx dy=Σ(Pcosα+Qcosβ+Rcosγ)dS=Σ(Pcosγcosα+Qcosγcosβ+R)dx dy
​ 其中 cos ⁡ α , cos ⁡ β , cos ⁡ γ \cos \alpha, \cos \beta, \cos \gamma cosα,cosβ,cosγ 是有向曲面 Σ \Sigma Σ 上任一点 ( x , y , z ) (x, y, z) (x,y,z) 处的法向量的方向余弦.

四、高斯公式和斯托克斯公式

  1. 高斯公式 设空间区域 Ω \Omega Ω 是由分片光滑的闭曲面 Σ \Sigma Σ 所围成, P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) P(x, y, z), Q(x, y, z), R(x, y, z) P(x,y,z),Q(x,y,z),R(x,y,z) Ω \Omega Ω
    具有一阶连续偏导数,则 ∯ Σ P   d y   d z + Q   d z   d x + R   d x   d y = ∬ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d v , \oiint_{\Sigma} P \mathrm{~d} y \mathrm{~d} z+Q \mathrm{~d} z \mathrm{~d} x+R \mathrm{~d} x \mathrm{~d} y=\iint_{\Omega}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right) \mathrm{d} v, ΣP dy dz+Q dz dx+R dx dy=Ω(xP+yQ+zR)dv, 其中 Σ \Sigma Σ Ω \Omega Ω
    整个边界曲面的外侧.

    (1) 高斯公式说明: 闭曲面的第二类曲面积分可用三重积分计算.
    (2) 对有洞的空间区域高斯公式成立.
    (3) 不是封闭曲面,补曲面使之封闭后,再用高斯公式.
    (4) 函数 P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) P(x, y, z), Q(x, y, z), R(x, y, z) P(x,y,z),Q(x,y,z),R(x,y,z) Ω \Omega Ω 上具有一阶连续偏导数.
  2. 斯托克斯公式(计算第二类空间曲线积分) 设 Γ \Gamma Γ 为分段光滑的空间有向闭曲线, Σ \Sigma Σ 是以 Γ \Gamma Γ 为边界的分片光滑的有向曲面, Γ \Gamma Γ 的正向与
    Σ \Sigma Σ 的侧符合右手规则,函数 P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) P(x, y, z), Q(x, y, z), R(x, y, z) P(x,y,z),Q(x,y,z),R(x,y,z) 在仓含曲面 Σ \Sigma Σ 在内的一个空间区
    域内有一阶连续的偏导数,则有

∮ Γ P ( x , y , z ) d x + Q ( x , y , z ) d y + R ( x , y , z ) d z = ∬ Σ ∣ d y   d z   d z   d x   d x   d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ = ∬ Σ ∣ cos ⁡ α cos ⁡ β cos ⁡ γ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ d S . \begin{array}{l} \oint_{\Gamma} P(x, y, z) \mathrm{d} x+Q(x, y, z) \mathrm{d} y+R(x, y, z) \mathrm{d} z \\ \quad=\iint_{\Sigma}\left|\begin{array}{ccc} \mathrm{d} y \mathrm{~d} z & \mathrm{~d} z \mathrm{~d} x & \mathrm{~d} x \mathrm{~d} y \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array}\right|=\iint_{\Sigma}\left|\begin{array}{ccc} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array}\right| \mathrm{d} S . \end{array} ΓP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=Σdy dzxP dz dxyQ dx dyzR=ΣcosαxPcosβyQcosγzRdS.
​ 注 \quad 斯托克斯公式提供求第二类空间曲线积分方法,且曲线有多段光滑曲线构成更方便.

五、散度与旋度
设某向量场 A ( x , y , z ) = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k A(x, y, z)=P(x, y, z) i+Q(x, y, z) j+R(x, y, z) k A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k,则
(1) 向量中任一点 ( x , y , z ) (x, y, z) (x,y,z) 处的散度 div ⁡ A = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ; \operatorname{div} A=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z} ; divA=xP+yQ+zR;
(2) 向量中任一点 ( x , y , z ) (x, y, z) (x,y,z) 处的旋度 rot ⁡ A = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ \operatorname{rot} A=\left|\begin{array}{ccc}i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R\end{array}\right| rotA=ixPjyQkzR.

第十二章 无穷级数

第一节 常数项级数的概念与性质
  1. 级数的定义
    设数列 { u n } , n = 1 , 2 , ⋯   , \left\{u_{n}\right\}, n=1,2, \cdots, {un},n=1,2,, ∑ n = 1 ∞ u n = u 1 + u 2 + ⋯ + u n + ⋯ \sum_{n=1}^{\infty} u_{n}=u_{1}+u_{2}+\cdots+u_{n}+\cdots n=1un=u1+u2++un+ 称为 ( ( ( 常数项 ) ( )( )( 无穷 ) ) ) 级数.

  2. 级数的收針与发散
    对级数 ∑ n = 1 ∞ u n , \sum_{n=1}^{\infty} u_{n}, n=1un, S n = u 1 + u 2 + ⋯ + u n , S_{n}=u_{1}+u_{2}+\cdots+u_{n}, Sn=u1+u2++un, lim ⁡ n → ∞ S n = s , \lim _{n \rightarrow \infty} S_{n}=s, limnSn=s, 则称此级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 收敘, 其和为 S , S, S,
    ∑ n = 1 ∞ u n = lim ⁡ n → ∞ S n = lim ⁡ n → ∞ ∑ k = 1 n u k = s ; \sum_{n=1}^{\infty} u_{n}=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} u_{k}=s ; n=1un=limnSn=limnk=1nuk=s; lims ⁡ n → ∞ \operatorname{lims}_{n \rightarrow \infty} limsn 不存在,则称 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 发散.

  3. 收敘级数的基本性质
    (1) 若 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 收玫, α \alpha α 是任意常数,则 ∑ n = 1 ∞ α u n \sum_{n=1}^{\infty} \alpha u_{n} n=1αun 收敘且 ∑ n = 1 ∞ α u n = α ∑ n = 1 ∞ u n . \sum_{n=1}^{\infty} \alpha u_{n}=\alpha \sum_{n=1}^{\infty} u_{n} . n=1αun=αn=1un.

(2) 若 ∑ n = 1 ∞ u n , ∑ n = 1 ∞ v n \sum_{n=1}^{\infty} u_{n}, \sum_{n=1}^{\infty} v_{n} n=1un,n=1vn 都收签,则 ∑ n = 1 ∞ ( u n ± v n ) \sum_{n=1}^{\infty}\left(u_{n} \pm v_{n}\right) n=1(un±vn) 收針且 ∑ n = 1 ∞ ( u n ± v n ) = ∑ n = 1 ∞ u n ± ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}\left(u_{n} \pm v_{n}\right)=\sum_{n=1}^{\infty} u_{n} \pm \sum_{n=1}^{\infty} v_{n} n=1(un±vn)=n=1un±n=1vn
(3)增加或去掉级数的有限项,级数的玫散性不变。.
(4)收敘级数加括号后所形成的级数仍收敘, 且和的值不变。.
\quad (1) 虽加括号后所形成的级数发散,能推出原级数发散.
(2) 一个级数加括号所形成的级数收玫并不能保证原级数玫敘.
(5) ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 收針\Longrightarrow lim ⁡ n → ∞ u n = 0 \lim _{n \rightarrow \infty} u_{n}=0 limnun=0 (收玫的必要条件)

(1) 若 u n → 0 , u_{n} \rightarrow 0, un0, ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 不一定收玫.
(2) u n u_{n} un 不趋零, 则 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 发散.

  1. 两个重要级奸
    (1) 几何级数 : ∑ n = 0 ∞ q n = { 1 1 − q ∣ q ∣ < 1  发散  ∣ q ∣ ⩾ 1 : \sum_{n=0}^{\infty} q^{n}=\left\{\begin{array}{ll}\frac{1}{1-q} & |q|<1 \\ \text { 发散 } & |q| \geqslant 1\end{array}\right. :n=0qn={1q1 发散 q<1q1
    (2) P P P 级数 : ∑ n = 1 ∞ 1 n p : \sum_{n=1}^{\infty} \frac{1}{n^{p}} :n=1np1 (当 P > 1 P>1 P>1 时,级数收玫;当 P ⩽ 1 P \leqslant 1 P1 时,级数发散)
第二节 常数项级数收玫性的判别法

一、正项级数

  1. 正项级数的定义与收玫性定理
    (1) 定义: 设 u n ⩾ 0 , u_{n} \geqslant 0, un0, 则称 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 为正项级数.

\quad 正项级数的前 n n n 项和数列 S n S_{n} Sn 是单调增加数列.

  1. 正项级数的判别法
    (1) 比较判别法
    ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un ∑ n = 1 ∞ v n \sum_{n=1}^{\infty} v_{n} n=1vn 为正项级数,若 ∃ N \exists N N,当 n > N n>N n>N 时,有 u n ⩽ v n , u_{n} \leqslant v_{n}, unvn,
    1. ∑ n = 1 ∞ v n \sum_{n=1}^{\infty} v_{n} n=1vn 收敘? ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 收玫;
    2. ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 发散 ⟹ ∑ n = 1 ∞ v n \Longrightarrow \sum_{n=1}^{\infty} v_{n} n=1vn 发散.
      (2) 比较判别法的极限形式
      ∑ n = 1 ∞ u n , ∑ n = 1 ∞ v n \sum_{n=1}^{\infty} u_{n}, \sum_{n=1}^{\infty} v_{n} n=1un,n=1vn 为正项级数, 且 lim ⁡ n → ∞ u n v n = l \lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=l limnvnun=l,
  1. 0 < l < ∞ , 0<l<\infty, 0<l<, ∑ n = 1 u n \sum_{n=1} u_{n} n=1un ∑ n = 1 v n \sum_{n=1} v_{n} n=1vn 同时发散或同时收玫;

  2. l = 0 l=0 l=0 ∑ n = 1 ∞ v n \sum_{n=1}^{\infty} v_{n} n=1vn 收玫,则 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 收玫;

  3. l = + ∞ , l=+\infty, l=+, ∑ n = 1 ∞ v n \sum_{n=1}^{\infty} v_{n} n=1vn 发散,则 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 发散.
    (3) 比值判别法
    ∑ n = 1 ∞ u n ( u n > 0 ) \sum_{n=1}^{\infty} u_{n}\left(u_{n}>0\right) n=1un(un>0) 为正项级数, 且. lim ⁡ n → ∞ u n + 1 u n = ρ , \lim _{n \rightarrow \infty} \frac{u_{n}+1}{u_{n}}=\rho, limnunun+1=ρ,

  4. ρ < 1 \rho<1 ρ<1 时, ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 收效;

  5. ρ > 1 \rho>1 ρ>1 , ∑ n = 1 ∞ u n , \sum_{n=1}^{\infty} u_{n} ,n=1un 发散

  6. ρ = 1 \rho=1 ρ=1 时不确定.
    (4) 根值判别法
    ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 为正项级数, 且 lim ⁡ n → ∞ u n n = ρ , \lim _{n \rightarrow \infty} \sqrt[n]{u_{n}}=\rho, limnnun =ρ,

  7. ρ < 1 \rho<1 ρ<1 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 收敘

  8. ρ > 1 \rho>1 ρ>1 时, ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 发散;

  9. ρ = 1 \rho=1 ρ=1 时不确定.
    \quad ( D D D 用比值法和根值法得 ρ > 1 \rho>1 ρ>1 时,有 u n u_{n} un 不趋于零.
    (2) 条件是充分非必要的.

总结 \quad 判别正项级数收玫的方法.
(1) 首先看通项是否趋于零,若不趋于零,则级数发散.
(2) 若趋于零,再用比较判别法.
(3) 当极限易求时则用比较原理的极袁形式,即用比值或根值判别法.

二、交错级数与任意项级数

  1. 交错级数
    (1) 定义: 设 u n > 0 , u_{n}>0, un>0, 则称 ∑ n = 1 ∞ ( − 1 ) n − 1 u n \sum_{n=1}^{\infty}(-1)^{n-1} u_{n} n=1(1)n1un 为交错级数.
    (2)莱布尼兹判别法
    若交错级数 ∑ n = 1 ∞ ( − 1 ) n − 1 u n \sum_{n=1}^{\infty}(-1)^{n-1} u_{n} n=1(1)n1un 满足 :
    (1) u n ⩾ u n + 1 , u_{n} \geqslant u_{n+1}, unun+1, (2) lim ⁡ n → ∞ u n = 0 , \lim _{n \rightarrow \infty} u_{n}=0, limnun=0, ∑ n = 1 ∞ ( − 1 ) n − 1 u n \sum_{n=1}^{\infty}(-1)^{n-1} u_{n} n=1(1)n1un 收玫且和数
    S ⩽ u 1 S \leqslant u_{1} Su1
     注   (1) 此定理的证明要会.  \begin{array}{ll}\text { 注 } & \text { (1) 此定理的证明要会. }\end{array}    (1) 此定理的证明要会
    (2) { u n } \left\{u_{n}\right\} {un} 单调递减是交错级数收敘的充分条件,若此条件不成立,则交错级数可能收
    毀也可能发散.

  2. 任意项级数
    (1) 定义: 设 u n ∈ R , u_{n} \in \mathbf{R}, unR, 则称 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 为任意项级数.
    (2) 绝对收放与条件收敘

​ (1) 若级数 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty}\left|u_{n}\right| n=1un 收玫,则称 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 绝对收玫.
​ (2) 若级数 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty}\left|u_{n}\right| n=1un 发散,而 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 收玫,则称 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 条件收敘.
(3) 绝对值判别法:若级数 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty}\left|u_{n}\right| n=1un 收敘\Longrightarrow ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 收玫.

​ (1) ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty}\left|u_{n}\right| n=1un 发敬, 不能判定 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 的玫散性,但发散是用比值法和根值法就能断定
∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 发散.
​ (2) 任意项级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty} u_{n} n=1un 的收敘性可分为绝对收敘与条件收玫两种.
​ 1) 绝对收敘可用正项级数的判别法判定.
​ 2) 条件收玫需证明 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty}\left|u_{n}\right| n=1un 发败, π ˉ ∑ n = 1 ∞ u n \bar{\pi} \sum_{n=1}^{\infty} u_{n} πˉn=1un 收針, 一般用定义和性质来证明.

总结 \quad 关于常数项级数收玫性判别的主要步骤如下:

  1. 若是正项级数,则根据级数一般项的特点,选择判别法.
    (1) 若 u n u_{n} un 中含 n ! n ! n! 或是几个因子乘积的形式,多用比值法.
    (2) 若 u n u_{n} un 中含 n α n^{\alpha} nα 因子的形式,多用比较法或比较法的极限形式.
    \quad (1) 比较的主要对象是 P P P 级数和几何级数.
    (2) 比较法的实质是比优穷小的阶.
    (3) 如果是抽象级数一般用比较判别法.
    (3) 利用定义,即考察 lim ⁡ S n \lim S_{n} limSn 是否存在 ( \left(\right. ( S n S_{n} Sn 是否有界)
  2. 若是任意项级数,则
    (1) 判别 ∑ n = 1 ∞ ∣ u n ∣ , \sum_{n=1}^{\infty}\left|u_{n}\right|, n=1un, 若收玫,则原级数绝对收玫;若发散,则看是否是交错级数或是否用比 值法及根值法判断.
    (2) 若是交错级数,则一般用莱布尼茨判别法判别.
    (3) 若是交错级数但不满足莱布尼茨条件,或不是交错级数的任意级数,则用定义或用性质判别.
第三节 幂级数

一、审级数及其收敛性

  1. 幂级数的定义 设 { a n } ( n = 0 , 1 , ⋯   ) \left\{a_{n}\right\}(n=0,1, \cdots) {an}(n=0,1,) 是一实数列 , , , 则称形如 ∑ n = 0 ∞ a n ( x − x 0 ) n \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} n=0an(xx0)n 的函数项级数为 x 0 x_{0} x0 处的幂级数.
    \quad x 0 = 0 x_{0}=0 x0=0 时,幕级数为 ∑ n = 0 a n x n ( \sum_{n=0} a_{n} x^{n}\left(\right. n=0anxn( x = 0 x=0 x=0 时,军级数值为 a 0 ) \left.a_{0}\right) a0).

  2. (1) 若 ∑ n = 0 a n x n \sum_{n=0} a_{n} x^{n} n=0anxn x 0 ≠ 0 x_{0} \neq 0 x0=0 收敘,则 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_{n} x^{n} n=0anxn ( − ∣ x 0 ∣ , ∣ x 0 ∣ ) \left(-\left|x_{0}\right|,\left|x_{0}\right|\right) (x0,x0) 内绝对收玫.
    (2) 若 ∑ n = 0 → a n x n \sum_{n=0}^{\rightarrow} a_{n} x^{n} n=0anxn x 0 x_{0} x0 发散,则 ∑ n = 0 a n x n \sum_{n=0} a_{n} x^{n} n=0anxn ( − ∞ , − ∣ x 0 ∣ ) ∪ ( ∣ x 0 ∣ , + ∞ ) \left(-\infty,-\left|x_{0}\right|\right) \cup\left(\left|x_{0}\right|,+\infty\right) (,x0)(x0,+) 发散.

  3. 收敛半径

    (1)收敛半径的定义

    ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_{n} x^{n} n=0anxn一定有一个正数 R R R,使得当 ∣ x ∣ > R |x|>R x>R 时, ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_{n} x^{n} n=0anxn 发散;当 ∣ x ∣ < R |x|<R x<R 时, ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_{n} x^{n} n=0anxn绝对收敛,则称 R R R 为幂级数 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_{n} x^{n} n=0anxn ( − R , R ) (-R, R) (R,R) 为幂级数 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_{n} x^{n} n=0anxn 收敛区间.

    ​ 注 (1) 若 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_{n} x^{n} n=0anxn 没有非零的收玫点,则 R = 0 ; R=0 ; R=0; ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_{n} x^{n} n=0anxn 没有发散,古,则 R = + ∞ . R=+\infty . R=+.
    ​ (2) 使幂级数 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_{n} x^{n} n=0anxn 条件收敛的点,只能是收敛区间的端点.

    ​ (3) 收玫域:所有收敛点构成的集合称为级数的收敛域.幂级数 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_{n} x^{n} n=0anxn 的收敛域为下述 6 种情形之 − : { 0 } , ( − ∞ , + ∞ ) , [ − R , + R ] , [ − R , + R ) , ( − R , + R ] , -:\{0\},(-\infty,+\infty),[-R,+R],[-R,+R),(-R,+R], :{0},(,+),[R,+R],[R,+R),(R,+R], ( − R , + R ) , (-R,+R), (R,+R), 可见收敛域与收敛区间不尽相同.

    (2)收敛半径的求法
    (1) 对 ∑ n = 0 ∞ a n x n , \sum_{n=0}^{\infty} a_{n} x^{n}, n=0anxn, a n ≠ 0 a_{n} \neq 0 an=0 lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = ρ , \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\rho, limnanan+1=ρ, R = { 1 ρ ρ ≠ 0 ∞ ρ ≐ 0 0 ρ = + ∞ R=\left\{\begin{array}{ll}\frac{1}{\rho} & \rho \neq 0 \\ \infty & \rho \doteq 0 \\ 0 & \rho=+\infty\end{array}\right. R=ρ10ρ=0ρ0ρ=+
    (2) 对 ∑ n = 0 ∞ a n x 2 n \sum_{n=0}^{\infty} a_{n} x^{2 n} n=0anx2n ∑ n = 0 ∞ a n x 2 n + 1 \sum_{n=0}^{\infty} a_{n} x^{2 n+1} n=0anx2n+1 如何求 R ? R ? R?
    : ∑ n = 0 ∞ a n x 2 n ⟹ lim ⁡ n → ∞ ∣ a n + 1 x 2 ( n + 1 ) a n x 2 n ∣ = ρ x 2 < 1 ⟹ R = 1 ρ : \sum_{n=0}^{\infty} a_{n} x^{2 n} \Longrightarrow \lim _{n \rightarrow \infty}\left|\frac{a_{n+1} x^{2(n+1)}}{a_{n} x^{2 n}}\right|=\rho x^{2}<1 \Longrightarrow R=\frac{1}{\sqrt{\rho}} :n=0anx2nlimnanx2nan+1x2(n+1)=ρx2<1R=ρ 1

二、幂级数的基本性质

  1. 幂级数和函数的性质
    (1) 若 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_{n} x^{n} n=0anxn 的收签半径为 R 1 , ∑ n = 0 ∞ b n x n R_{1}, \sum_{n=0}^{\infty} b_{n} x^{n} R1,n=0bnxn 的收敛半径为 R 2 , R_{2}, R2, ∑ n = 0 ∞ ( a n + b n ) x n \sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) x^{n} n=0(an+bn)xn 的收放半径为 R = min ⁡ { R 1 , R 2 } . ( R=\min \left\{R_{1}, R_{2}\right\} .( R=min{R1,R2}.( 证明 ) ) ) : ∑ n = 1 ∞ n x n + 1 + ∑ n = 0 ∞ ( 2 n + 1 ) x n : \sum_{n=1}^{\infty} n x^{n+1}+\sum_{n=0}^{\infty}(2 n+1) x^{n} :n=1nxn+1+n=0(2n+1)xn 进行合并.

(2) 若幂级数 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_{n} x^{n} n=0anxn 在收敛域上的和函数为 S ( x ) S(x) S(x) S ( x ) = ∑ n = 0 ∞ a n x n , S(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, S(x)=n=0anxn,
(1) S(x)在收敛域内连续;
(2) 逐项求导: S ( x ) S(x) S(x) 在收敛区间 ( − R , R ) (-R, R) (R,R) 内可导且可逐项求导.
S ′ ( x ) = ( ∑ n = 0 ∞ a n x n ) ′ = ∑ n = 1 ∞ n a n x n − 1 S^{\prime}(x)=\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1} S(x)=(n=0anxn)=n=1nanxn1
(3) 逐项积分: S ( x ) S(x) S(x) 在收敛域上可积且可逐项求积.

∫ 0 x ( ∑ n = 0 ∞ a n t n ) d t = ∑ n = 0 ∞ ∫ 0 x a n t n   d t = ∑ n = 0 ∞ 1 n + 1 a n x n + 1 \int_{0}^{x}\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) \mathrm{d} t=\sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} \mathrm{~d} t=\sum_{n=0}^{\infty} \frac{1}{n+1} a_{n} x^{n+1} 0x(n=0antn)dt=n=00xantn dt=n=0n+11anxn+1

\quad 幂级数 ∑ n = 0 ∞ a n x n , ∑ n = 0 ∞ a n n + 1 x n + 1 , ∑ n = 1 ∞ n a n x n − 1 \sum_{n=0}^{\infty} a_{n} x^{n}, \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}, \sum_{n=1}^{\infty} n a_{n} x^{n-1} n=0anxn,n=0n+1anxn+1,n=1nanxn1 的收敛半径相等.

  1. 在收玫域内求幕级数的和函数
    (1)求幕函数和函数的方法.

    ​ (1) 利用常见已知其和函数的幂级数求.
    ​ (2) 利用实函数和函数的性质求.
    (2)常见已知其和函数的幕级数.
    ​ (1) ∑ n = 0 ∞ x n = 1 1 − x , ∣ x ∣ < 1 ; ∑ n = 0 ∞ ( − 1 ) n x n = 1 1 + x , ∣ x ∣ < 1 \sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x},|x|<1 ; \sum_{n=0}^{\infty}(-1)^{n} x^{n}=\frac{1}{1+x},|x|<1 n=0xn=1x1,x<1;n=0(1)nxn=1+x1,x<1
    ​ (2) ∑ n = 0 ∞ x n n ! = e x , x ∈ R \sum_{n=0}^{\infty} \frac{x^{n}}{n !}=\mathrm{e}^{x}, x \in \mathbf{R} n=0n!xn=ex,xR
    ​ (3) ∑ n = 0 ∞ x n + 1 n + 1 = ∑ n = 1 ∞ x n n = − ln ⁡ ( 1 − x ) , x ∈ [ − 1 , 1 ) \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}=\sum_{n=1}^{\infty} \frac{x^{n}}{n}=-\ln (1-x), x \in[-1,1) n=0n+1xn+1=n=1nxn=ln(1x),x[1,1)
    ​ (4) ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = sin ⁡ x , x ∈ ( − ∞ , + ∞ ) \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) !}=\sin x, x \in(-\infty,+\infty) n=0(1)n(2n+1)!x2n+1=sinx,x(,+) ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = cos ⁡ x , x ∈ ( − ∞ , + ∞ ) \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n) !}=\cos x, x \in(-\infty,+\infty) n=0(1)n(2n)!x2n=cosx,x(,+)

三、函数展开成幂级数
1. 1 . 1. 直接展开法 : f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n , : f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}, :f(x)=n=0n!f(n)(x0)(xx0)n, 并写出收敛域.
注 (1) 当 x 0 = 0 x_{0}=0 x0=0 时,级数 ∑ n = 0 α 0 f ( n ) ( 0 ) n ! x n \sum_{n=0}^{\alpha_{0}} \frac{f^{(n)}(0)}{n !} x^{n} n=0α0n!f(n)(0)xn 称为 f ( x ) f(x) f(x) 的麦克劳林级数.
(2) 常见函数的暴级数展开式:

​ 1) e x = ∑ n = 0 ∞ 1 n ! x n , x ∈ R \mathrm{e}^{x}=\sum_{n=0}^{\infty} \frac{1}{n !} x^{n}, x \in \mathbf{R} ex=n=0n!1xn,xR

​ 2) sin ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 , x ∈ R ; cos ⁡ x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n , x ∈ R \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) !} x^{2 n+1}, x \in \mathbf{R} ; \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n) !} x^{2 n}, x \in \mathbf{R} sinx=n=0(2n+1)!(1)nx2n+1,xR;cosx=n=0(2n)!(1)nx2n,xR
​ 3) ln ⁡ ( 1 + x ) = ∑ n = 0 ∞ ( − 1 ) n 1 n + 1 x n + 1 , x ∈ ( − 1 , 1 ] \ln (1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n+1} x^{n+1}, x \in(-1,1] ln(1+x)=n=0(1)nn+11xn+1,x(1,1]
​ 4) 1 1 − x = ∑ n = 0 ∞ x n , x ∈ ( − 1 , 1 ) ; 1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n , x ∈ ( − 1 , 1 ) \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, x \in(-1,1) ; \frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}, x \in(-1,1) 1x1=n=0xn,x(1,1);1+x1=n=0(1)nxn,x(1,1)

  1. 间接展开法 通过一定的运酋(四则运算、(逐项)求导、(逐项)积分)将函数转化为其他函数,进而利用 新函数的幕级数展开式,将原来函数展开为幕级数的方法.

    总结

    1. 关于求幕级数的收敘域.
      (1) 先求收玫半径(一般方法),得收玫区间.
      (2) 再考虑两个端点的收玫性,从而得收敘域.

    2. 关于某些面级数的和函数及某些数项级数的和.
      (1)应将级数通过代数运算、变量代换、逐项求导、逐项积分等手段化成已知和函数的级 数(特别是等比级数), 从而求得和函数;
      (2)某些数项级数的求和是将其看作某个界级数在某点处的值,先求出该幕级数的和函 数,再求出该数项级数的和.

    3. 关于将函数展开成輪级数. 间接展开法是根据冠级数展开的唯一性,将要展开的函数通过代数运算、变量置换、逐项求
      (1) 记住 1 1 ± x , e x , sin ⁡ x , cos ⁡ x , ln ⁡ ( 1 + x ) \frac{1}{1 \pm x}, \mathrm{e}^{x}, \sin x, \cos x, \ln (1+x) 1±x1,ex,sinx,cosx,ln(1+x) 等函数的展开式及收玫域.

    (2) 要理解所谓“将 f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 展开成保级数”指的是要求形如 ∑ n = 0 ∞ a n ( x − x 0 ) n \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} n=0an(xx0)n 的幕级数.
    (3) 将函数 f ( x ) f(x) f(x) 通过代数运算、变量代换、逐项求导、逐项积分等手段化成(1)中已知展 开式的幕级数展开。

第四节 傅里叶级数

一、周期为 2 π 2 \pi 2π 的傅里叶级数

  1. 定义 若函数 f ( x ) f(x) f(x) 是周期为 2 π 2 \pi 2π 的函数,则 a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) 2a0+n=1(ancosnx+bnsinnx),其中 a n = 1 π ∫ − π π f ( x ) cos ⁡ n x   d x , b n = 1 π ∫ − π π f ( x ) sin ⁡ n x   d x , n = 0 , 1 , 2 , ⋯   , a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x \mathrm{~d} x, b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x \mathrm{~d} x, n=0,1,2, \cdots, an=π1ππf(x)cosnx dx,bn=π1ππf(x)sinnx dx,n=0,1,2,,称为 f ( x ) f(x) f(x) 的以 2 π 2 \pi 2π 为周期的傅里叶级数,记为 f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) f(x)2a0+n=1(ancosnx+bnsinnx).
    注 (1) 根据周期 函数的性质知:
    1) a n = 1 π ∫ a a + 2 π f ( x ) cos ⁡ n x   d x ( n = 0 , 1 , 2 , ⋯   ) a_{n}=\frac{1}{\pi} \int_{a}^{a+2 \pi} f(x) \cos n x \mathrm{~d} x(n=0,1,2, \cdots) an=π1aa+2πf(x)cosnx dx(n=0,1,2,)
    2) b n = 1 π ∫ a a + 2 π f ( x ) sin ⁡ n x   d x ( n = 1 , 2 , ⋯   ) b_{n}=\frac{1}{\pi} \int_{a}^{a+2 \pi} f(x) \sin n x \mathrm{~d} x(n=1,2, \cdots) bn=π1aa+2πf(x)sinnx dx(n=1,2,)
    (2) 根据奇偶函数的性质知:

​ 1) 当 f ( x ) f(x) f(x) 是奇丞数时, f ( x ) ∼ ∑ n = 1 ∞ b n sin ⁡ n x f(x) \sim \sum_{n=1}^{\infty} b_{n} \sin n x f(x)n=1bnsinnx (正弦级数)
​ 2) 当 f ( x ) f(x) f(x) 是偶函数时, f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n x ( f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x( f(x)2a0+n=1ancosnx( 余弦级数 ) ) )

  1. 收敛定理一一狄利克雷(Dirichlet)充分条件
    设函数 f ( x ) f(x) f(x) 是周期为 2 π 2 \pi 2π 的可积函数,且满足
    (1) f ( x ) f(x) f(x) 在一个周期内连续且只有有限个第一类间断与.
    (2) f ( x ) f(x) f(x) 在一个周期内红多有有限个极值点.
    f ( x ) f(x) f(x) 的以 2 π 2 \pi 2π 为周期的傅里叶级数是收玫, 且

s ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) = 1 2 [ f ( x + 0 ) + f ( x − 0 ) ] s(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\frac{1}{2}[f(x+0)+f(x-0)] s(x)=2a0+n=1(ancosnx+bnsinnx)=21[f(x+0)+f(x0)]

二、周期为 2 l 2 l 2l 傅里叶级数

  1. 定义 若 f ( x ) f(x) f(x) 是周期为 2 l 2 l 2l 的函数, 则 f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l + b n sin ⁡ n π x l ) f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right) f(x)2a0+n=1(ancoslnπx+bnsinlnπx)
    其中 a n = 1 l ∫ − l l f ( x ) cos ⁡ n π x l   d x , b n = 1 l ∫ − l l f ( x ) sin ⁡ n π x l   d x a_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} \mathrm{~d} x, b_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} \mathrm{~d} x an=l1llf(x)coslnπx dx,bn=l1llf(x)sinlnπx dx
    \quad 周 期为 2 l 2 l 2l 的傅里叶级数的收玫性结论与周期为 2 π 2 \pi 2π 的傅里叶级数一样.

  2. 只在[0,l]上有定义的函数的傅里叶级数展开 定义在[0,l]上的函数可以有多种方式展开成三角级数,但常见的方式有三种:周期性奇 延拓、周期性偶延拓、周期延拓分别得到的三角级数.(1)展开成傅里叶级数(周期延拓)
    f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ 2 n π l x + b n sin ⁡ 2 n π l x ) f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{2 n \pi}{l} x+b_{n} \sin \frac{2 n \pi}{l} x\right) f(x)2a0+n=1(ancosl2nπx+bnsinl2nπx)
    其中 a n = 2 l ∫ 0 t f ( x ) cos ⁡ 2 n π l x   d x , b n = 2 l ∫ 0 t f ( x ) sin ⁡ 2 n π l x   d x a_{n}=\frac{2}{l} \int_{0}^{t} f(x) \cos \frac{2 n \pi}{l} x \mathrm{~d} x, b_{n}=\frac{2}{l} \int_{0}^{t} f(x) \sin \frac{2 n \pi}{l} x \mathrm{~d} x an=l20tf(x)cosl2nπx dx,bn=l20tf(x)sinl2nπx dx
    (2)展开成正弘级数(奇延拓后,再周期延拓)
    f ( x ) ∼ ∑ n = 1 ∞ b n sin ⁡ n π l x , x ∈ [ 0 , l ] f(x) \sim \sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi}{l} x, \quad x \in[0, l] f(x)n=1bnsinlnπx,x[0,l]
    其中 b n = 2 l ∫ 0 l f ( x ) sin ⁡ n π l x   d x b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \frac{n \pi}{l} x \mathrm{~d} x bn=l20lf(x)sinlnπx dx
    (3)展开成余弦级数(偶延拓后,再周期延拓)
    f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n π l x , x ∈ [ 0 , l ] f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi}{l} x, \quad x \in[0, l] f(x)2a0+n=1ancoslnπx,x[0,l]
    其中 a n = 2 l ∫ 0 l f ( x ) cos ⁡ n π l x   d x a_{n}=\frac{2}{l} \int_{0}^{l} f(x) \cos \frac{n \pi}{l} x \mathrm{~d} x an=l20lf(x)coslnπx dx
    \quad 比较常用的是 l = π . l=\pi . l=π.

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合;、下 4载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合;、下载 4使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合;、下载 4使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值