c++ 一维高斯拟合_高斯曲线拟合原理及实现

本文详细介绍了C++中如何使用高斯列主元法进行一维高斯拟合,包括法方程组的求解、最小二乘解的计算以及平方误差的评估。通过示例代码展示了数据输入、拟合多项式系数的计算过程,并提供了用户交互功能,允许用户输入数据点并查看拟合结果。
摘要由CSDN通过智能技术生成

#include#include#include#include

double f(int n,double x){ //f(n,x)用来返回x的n次方

double y=1.0;if(n==0)return 1.0;else{for(int i=0;i

}

}int xianxingfangchengzu(double **a,int n,double *b,double *p,double dt)//用高斯列主元法来求解法方程组

{inti,j,k,l;doublec,t;for(k=1;k<=n;k++)

{

c=0.0;for(i=k;i<=n;i++)if(fabs(a[i-1][k-1])>fabs(c))

{

c=a[i-1][k-1];

l=i;

}if(fabs(c)<=dt)return(0);if(l!=k)

{for(j=k;j<=n;j++)

{

t=a[k-1][j-1];

a[k-1][j-1]=a[l-1][j-1];

a[l-1][j-1]=t;

}

t=b[k-1];

b[k-1]=b[l-1];

b[l-1]=t;

}

c=1/c;for(j=k+1;j<=n;j++)

{

a[k-1][j-1]=a[k-1][j-1]*c;for(i=k+1;i<

如果你不想使用额外的数学库,也可以在 C++实现二维高斯曲线拟合。以下是一个简单的示例代码: ```c++ #include <iostream> #include <cmath> using namespace std; const int N = 100; double x[N], y[N], z[N]; int main() { // 读入数据,假设数据已经被归一化到 [0, 1] 的范围内 for (int i = 0; i < N; i++) { cin >> x[i] >> y[i] >> z[i]; } // 初始化参数 double a = 1, b = 0.5, c = 0.5, d = 0.5, e = 0.5, f = 0; // 迭代求解参数 const double eps = 1e-6; double last_loss = 1e9; for (int iter = 0; iter < 100; iter++) { double loss = 0; double sa = 0, sb = 0, sc = 0, sd = 0, se = 0, sf = 0; for (int i = 0; i < N; i++) { double xi = x[i], yi = y[i], zi = z[i]; double ti = a*exp(-((xi-b)*(xi-b)/c + (yi-d)*(yi-d)/e)) + f; double err = ti - zi; loss += err * err; sa += err * exp(-((xi-b)*(xi-b)/c + (yi-d)*(yi-d)/e)); sb += err * a * exp(-((xi-b)*(xi-b)/c + (yi-d)*(yi-d)/e)) * (xi-b) / c; sc += err * a * exp(-((xi-b)*(xi-b)/c + (yi-d)*(yi-d)/e)) * (xi-b)*(xi-b)/(c*c); sd += err * a * exp(-((xi-b)*(xi-b)/c + (yi-d)*(yi-d)/e)) * (yi-d) / e; se += err * a * exp(-((xi-b)*(xi-b)/c + (yi-d)*(yi-d)/e)) * (yi-d)*(yi-d)/(e*e); sf += err; } if (loss > last_loss) break; // 如果损失函数不再下降,则停止迭代 last_loss = loss; a -= sa * eps; b -= sb * eps; c -= sc * eps; d -= sd * eps; e -= se * eps; f -= sf * eps; } // 输出结果 cout << "a = " << a << ", b = " << b << ", c = " << c << ", d = " << d << ", e = " << e << ", f = " << f << endl; return 0; } ``` 这里使用了梯度下降算法求解参数,具体实现可以参考代码注释。需要注意的是,这里假设数据已经被归一化到 [0, 1] 的范围内,因此在实际应用中需要根据数据的实际情况进行归一化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值