python 大于10的前三个_Numpy查找大于前n个元素的元素

本文介绍如何通过NumPy的内置C代码实现,加速Python中窗口滑动操作。rolling_window函数通过增加额外维度和适当步长,实现在内存消耗不大的情况下进行高效计算。通过实例展示如何使用该技巧并查找满足特定条件的索引。
摘要由CSDN通过智能技术生成

A loop in Python are however very slow compared to a loop in C code.

Fortunately there is a trick to make NumPy perform this looping

internally in C code. This is achieved by adding an extra dimension

with the same size as the window and an appropriate stride:def rolling_window(a, window):

shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)

strides = a.strides + (a.strides[-1],)

return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)

使用此功能可以执行以下操作:winlen = 5

values = np.array([160, 140, 152, 142, 143, 186, 152, 145, 165, 152, 143, 148, 196, 152, 145, 157, 152])

rolling_values = rolling_window(values, winlen + 1)

rolling_indices = np.arange(winlen, values.shape[0])

mask = np.all(rolling_values[:, [-1]] > rolling_values[:, :-1], axis=1)

indices = rolling_indices[mask]

print(indices)

说明:

rolling_window将值转换为以下格式的数组:

^{pr2}$

每行包含一个元素(从第六个元素开始)和前五个元素。由于跨步技巧,这种表示不需要比原始数组多多少内存。在

现在,我们可以比较每行的最后一个元素是否大于previos元素,并查找相应的索引。在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值