支持度
Support(支持度):表示同时包含A和B的事务占所有事务的比例。如果用P(A)表示使用A事务的比例,那么Support=P(A&B)
苍天不负有心人啊,我玩了两三个周的文本挖掘,终于实现了,我心甚慰!!!甚慰
一开始参考的别人的代码,数据只能分析一个字符的字符串,我这个可以分析多少个字符的字符串都没得问题啦,美滋滋,下面的代码直接复制可能会有个别缩进问题,这个是因为我网络不好,所有只能一段一段代码复制,一下子全复制上去会卡死
好啦,废话不多说,上干货
置信度
Confidence(可信度):表示使用包含A的事务中同时包含B事务的比例,即同时包含A和B的事务占包含A事务的比例
实现代码
import random
import numpy as np
class Association_rules:
def __init__(self,minSupport=0.2,minConfidence=0.5):
'''
minSuport:最小支持度
minConfidence:最小置信度
dataset:数据集
count:存放frequent itemsets 以及 support
associationRules:满足minConfidence的关联规则
num:元素数量
threshold = num*minSupport:由num和minSupport算出的阈值
'''
self.minSupport = minSupport
self.minConfidence = minConfidence
self.dataset = None
self.count = None
self.associationRules = None
self.num = 0