多模态(多特征)使用DataLoader方法

该博客介绍了在多模态研究中如何使用DataLoader来处理不同特征的输入。通过创建自定义的subDataset类,将两个特征(Feature_1和Feature_2)与标签(Label)结合,并在__getitem__方法中转换为张量,以便于网络的训练。DataLoader以指定的batch_size和shuffle参数对数据进行分批加载。
摘要由CSDN通过智能技术生成

DataLoader 多模态输入方法

多模态研究中,经常需要多种特征拼接输入网络,例如cnn的输出拼接低维特征后连接线性层进行输出、简单总结DataLoader使用办法:

import torch.utils.data.dataset as Dataset

class subDataset(Dataset.Dataset):
	def __init__(self,Feature_1,Feature_2,Label):
		self.Feature_1 = Feature_1
		self.Feature_2 = Feature_2
		self.Label = Label
	def __len__(self):
		return len(self.Label)
	def __getitem__(self,index):
		Feature_1 = torch.Tensor(self.Feature_1[index])
		Feature_2 = torch.Tensor(self.Feature_2[index])
		Label = torch.Tensor(self.Label[index])
		return Feature_1,Feature_2,Label

train_dataset = subDataset(Feature_1,Feature_2,Label)
train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True)
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值