canny边缘检测算法_基于FPGA三种边缘检测算法的演示

1 拉普拉斯核边缘检测

边缘检测是另一种常用的滤波器。在物体的边缘,通常都有像素值的变化,反映了物体与背景的差异,或者两个物体之间的差异。由于边缘以像素之间的差异为特点,因此使用差分滤波器可以检测边缘。

如图1所示的拉普拉斯核。

3612da901de1b2b9d917fdbfdbb19833.png

图1 拉普拉斯滤波器核

拉普拉斯核边缘检测展示:

af9351b5de47923515c31f94347ab18b.png

图2 实验原图

12f5ba71480e09656b23a2e9874459e9.png

图3  laplacian边缘检测实验结果

 2 sobel边缘检测

      Sobel算法是像素图像边缘检测中最重要的算子之一,在机器学习、数字媒体、计算机视觉等信息科技领域起着举足轻重的作用。在技术上,它是一个离散的一阶差分算子,用来计算图像亮度函数的一阶梯度之近似值。在图像的任何一点使用此算子,将会产生该点对应的梯度矢量或是其法矢量

     Sobel边缘检测算法比较简,实际应用中效率比canny边缘检测效率要高,但是边缘不如Canny检测的准确,但是很多实际应用的场合,sobel边缘却是首选,尤其是对效率要求较高,而对细纹理不太关心的时候。

                         实验原视频

sobel检测结果演示

3 灰度图像的形态学梯度边缘检测

膨胀粗化一幅图像中的区域,而腐蚀则细化它们。膨胀和腐蚀的差强调了区域间的边界。同质区域不受影响,因此相减操作趋于消除同质区域。最终的结果是边缘被增强而同质区域的贡献被抑制掉了的图像,从而产生“类似于微分”(梯度)的效果。

 形态学梯度演示

您觉得那种效果好请为它投一票。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值