tensorflow 旋转图片_使用TensorFlow对图像进行随机旋转的实现示例

在使用深度学习对图像进行训练时,对图像进行随机旋转有助于提升模型泛化能力。然而之前在做旋转等预处理工作时,都是先对图像进行旋转后保存到本地,然后再输入模型进行训练,这样的过程会增加工作量,如果图片数量较多,生成旋转的图像会占用更多的空间。直接在训练过程中便对图像进行随机旋转,可有效提升工作效率节省硬盘空间。

使用TensorFlow对图像进行随机旋转如下:

TensorFlow版本为1.13.1

#-*- coding:utf-8 -*-

'''

使用TensorFlow进行图像的随机旋转示例

'''

import tensorflow as tf

import numpy as np

import cv2

import matplotlib.pyplot as plt

img = cv2.imread('tf.jpg')

img = cv2.resize(img,(220,220))

img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

def tf_rotate(input_image, min_angle = -np.pi/2, max_angle = np.pi/2):

'''

TensorFlow对图像进行随机旋转

:param input_image: 图像输入

:param min_angle: 最小旋转角度

:param max_angle: 最大旋转角度

:return: 旋转后的图像

'''

distorted_image = tf.expand_dims(input_image, 0)

random_angles = tf.random.uniform(shape=(tf.shape(distorted_image)[0],), minval = min_angle , maxval = max_angle)

distorted_image = tf.contrib.image.transform(

distorted_image,

tf.contrib.image.angles_to_projective_transforms(

random_angles, tf.cast(tf.shape(distorted_image)[1], tf.float32), tf.cast(tf.shape(distorted_image)[2], tf.float32)

))

rotate_image = tf.squeeze(distorted_image, [0])

return rotate_image

global_init = tf.global_variables_initializer()

with tf.Session() as sess:

init = tf.initialize_local_variables()

sess.run([init, global_init])

coord = tf.train.Coordinator()

threads = tf.train.start_queue_runners(coord=coord)

image = tf.placeholder(shape=(220, 220, 3), dtype=tf.float32)

rotate_image = tf_rotate(image, -np.pi/2, np.pi/2)

output = sess.run(rotate_image, feed_dict={image:img})

# print('output:',output)

plt.imshow(output.astype('uint8'))

plt.title('rotate image')

plt.show()

结果如下:

原图:

随机旋转后的图:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

本文标题: 使用TensorFlow对图像进行随机旋转的实现示例

本文地址: http://www.cppcns.com/jiaoben/python/298891.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值