问题描述
我使用下面指令,按照默认方式安装TF。
conda install tensorflow-gpu=1.14.0
在服务器上使用Tensorflow-gpu时,显示 CUDA driver version is insufficient for CUDA runtime version
。一般来说,要么安装更高版本的CUDA,要么使用一个低版本的TF。但是项目代码对tensorflow的版本有较高的依赖,而在服务器上安装CUDA又很繁琐,因此希望找到另一种解决方案。
原因分析
查看当前CUDA版本
cat /usr/local/cuda/version.txt 或者
nvcc --version
得到 Cuda compilation tools, release 9.0, V9.0.176
检查安装tensorflow-gpu=1.14.0时所依赖的包。conda install tensorflow-gpu=1.14.0
显示
尽管我系统的CUDA是9.0,conda 仍默认使用 cudatoolkit-10.0.130-0, cudnn-7.6.5-cuda10.0_0.因此才引起了不兼容的问题。
解决方案
在使用conda install时,不能显示指定其依赖包的版本。因此我去单独下载了适应我的系统的包,进行本地安装。
conda install /your full path/cudatoolkit-9.2-0.tar.bz2
conda install /your full path/cudnn-7.6.5-cuda9.2_0.tar.bz2
在先安装完这俩个包后,再使用
conda install tensorflow-gpu=1.14.0
conda会跳过对这俩个包的下载,当下载完剩下的依赖包后,会统一进行安装。安装完后就能正常使用GPU了。