cuda nvcc版本不一致_TF CUDA驱动不兼容

问题描述

我使用下面指令,按照默认方式安装TF。

conda install tensorflow-gpu=1.14.0

在服务器上使用Tensorflow-gpu时,显示 CUDA driver version is insufficient for CUDA runtime version。一般来说,要么安装更高版本的CUDA,要么使用一个低版本的TF。但是项目代码对tensorflow的版本有较高的依赖,而在服务器上安装CUDA又很繁琐,因此希望找到另一种解决方案。

原因分析

查看当前CUDA版本

cat /usr/local/cuda/version.txt 或者
nvcc --version

得到 Cuda compilation tools, release 9.0, V9.0.176

检查安装tensorflow-gpu=1.14.0时所依赖的包。conda install tensorflow-gpu=1.14.0显示

3d351d8c632bf1be3b332aa52efab244.png

尽管我系统的CUDA是9.0,conda 仍默认使用 cudatoolkit-10.0.130-0, cudnn-7.6.5-cuda10.0_0.因此才引起了不兼容的问题。

解决方案

在使用conda install时,不能显示指定其依赖包的版本。因此我去单独下载了适应我的系统的包,进行本地安装。

conda install /your full path/cudatoolkit-9.2-0.tar.bz2
conda install /your full path/cudnn-7.6.5-cuda9.2_0.tar.bz2

在先安装完这俩个包后,再使用

conda install tensorflow-gpu=1.14.0

conda会跳过对这俩个包的下载,当下载完剩下的依赖包后,会统一进行安装。安装完后就能正常使用GPU了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值