我们总是希望能通过有限元方法来模拟会在其他域内旋转或平移的固体对象;此时,就可以使用 COMSOL Multiphysics 中的变形网格接口。本篇博客将分析一些会在其他域内发生大型直线平移或旋转的域,并将介绍各种可用于分析此类问题的有效建模技巧。
直线平移通过域的对象
在 “借助变形网格接口模拟平移运动” 博客中,我们曾讨论过如何模拟在流体或真空域内平移的对象。我们在该初始方法中用到了变形网格接口,还引入了四边形(或三角形)变形域的概念,其中的变形由双线性内插定义。如果能对移动对象周围的区域进行合理网格划分,那就能通过该技巧来分析大变形,但这并不总是可行。
在复杂域内沿直线路径移动的固体对象。
在上例中,一个对象沿一条由 \mathbf x(t) 定义的直线路径通过一个侧边有突起的域。就很难应用原来的方法,那该如何处理呢?
使用滑动网格处理大型直线平移
求解分为四步,分别是:
在这两个域中创建几个不同的几何对象
通过形成装配体功能设定一致对
通过之前设定的网格变形技巧定义直线运动
使用一致对保证求解物理场的连续性
我们首先应将原始模型空间分为两个不同的几何对象,如下图所示。其中,红色域表示稳态域,蓝色域是对象正进行直线平移的区域。分割过程将在几何序列内实现,最终通过形成装配体操作完成。
有关此功能的介绍及操作步骤,请观看相关视频。
将模拟空间分割为几个不同的几何对象。
形成装配体步骤支持蓝色域内的有限元网格相对红色域内的