往期回顾
警惕!对AI大模型的错误认知正在误导你⓵全军覆没——大模型征战高考数学卷
警惕!对AI大模型的错误认知正在误导你⓶三大因素——保障模型推理质量的关键
⓷云泥之别——当下垂直领域专用AI碾压大模型
老胡:我还是不敢相信AI做高考数学题这么“拉胯”,太意外了!
彬老师:我要纠正一下,是大模型做高考数学很差,不是所有的AI都这样。认知误区又来了!
老胡:啊?可把我弄糊涂了。
彬老师:Google的DeepMind团队开发的Alpha-Geometry2,在国际数学奥林匹克竞赛(IMO)的几何体测试中,首次超越人类金牌得主的水平,你们听说过吗?
老胡:我就记得在哪听过AI在国际奥数很厉害,那高考数学怎么不行?
彬老师:我们说的DeepSeek等是通用大语言模型,而非专用AI。
老胡:哦,专用AI能拿国际奥数金牌,高考数学肯定不在话下。
彬老师:这是数学领域的几何专项工具,解高考几何题肯定是没问题的。不仅是在数学领域,DeepMind旗下的AlphaGo,围棋水平远超人类顶尖棋手(详见链接《狗大师崛起》 ,《狗大师修仙》)。而大模型虽然通过阅读大量围棋电子书籍也懂下棋,但水平也就5级左右(大模型们的自我判断),相差甚远!还有AlphaFold,能够预测含有蛋白质结构,为药物研发带来了新的可能,其CEO 哈萨比斯还因此获得了诺贝尔奖。
老胡:这些专用AI要么打败奥数金牌得主,要么碾压人类围棋顶尖高手,要么拿诺贝尔奖,太神了,为什么通用大模型就达不到它们的能力呢?
弘老师:这里原因比较复杂,我先重点说一个关键——数据,DeepMind训练数学AI的大部分数据都是合成的,这样就能生成无穷无尽的数据供 AI 训练,自然容易让 AI 变得强大。
小涂:训练数据为什么可以合成?
弘老师:这里不展开细说,简单举个例子,人类发现三角形内角之和等于180度、两边之和大于第三边、勾股定理等等。其实有足够多的图形数据和尝试,AI也能发现这些规律的,而且可能发现得更多。所以,合成数学数据是可行的。
小涂:太不可思议了!
弘老师:其实AlphaGo的训练方式——左右手互搏完成数千万盘对局,不断总结进步,这些自我对弈的棋谱也是一种合成数据。
小涂:有道理。
弘老师:AlphaFold则是在专门的蛋白质数据库上完成训练,这不是合成数据,但属于领域专业数据,通用大模型不一定能获取到。
除了数据,专用领域往往需要一些特定的专业处理模式,以便高效的发挥其性能,这就是第二个要点,这里不展开了。
小涂:那有没有可能,通用大模型也能达到这些专用AI的能力呢?
彬老师:这是必然的,实现的方法也有很多,前期可能是整合多种能力的混合架构模式。目前,科学界的主流看法是,未来3-5年内即可实现。也就是说,大模型训练完毕后,便能在数学领域超越奥数金牌选手,在蛋白质折叠研究上与AlphaFold媲美,在围棋竞技中毫无悬念地战胜世界冠军…要是这些都成为现实,那就标志着通用人工智能AGI时代的初级阶段已然来临。
老胡:那还只是初级阶段?那达到怎样的程度才算算高级阶段呢?
弘老师:我们刚才提到那些专业领域的重大突破,其实都是人类能够预想到的。当AI取得了远远超出人类认知范围,让大家连想都想不到的成就时,那便是进入高级阶段了。
老胡:期待那一天的到来!
未完待续…
公众号:收获不止数据库
系列回顾