极坐标t1t2几何意义_参数方程与极坐标高考理科数学考点解析

一、常用参数方程

我们需要掌握的参数方程,和我们学习过的一些曲线方程相关,与直角坐标方程的互换等,这些需要掌握,首先我们开始复习一下参数方程的基础知识,在这里不做过多的讲解,主要是回忆巩固一下。

1、 直线参数方程

第1种形式

3ab32f625b89160a7635f6bd898284f7.png

第2种形式

3acfc33c010e400f150473b003bd485c.png

两种形式中的参数t的含义是不一样的,第1种形式中参数t表示的是直线上的点到定点的距离,而在第2种形式中参数t不具备某种几何意义,这里需要区分一下。

2、 圆的参数方程

a431030f6e295a178cb312922eb5ed74.png

圆的参数方程我这里留给大家,这里不写了

3、 椭圆参数方程

1bd32aca3ff47ac3ef253b75e4d8a09a.png

椭圆的参数方程中,要注意那个角不是OM的旋转角

4、 双曲线的参数方程

2ecefcb5e31e6b6cc22c60d0f513f1f9.png

5、 抛物线的参数方程

861df10d6f0a69373e9d05905a69a8c9.png

二、极坐标

我们常用的一些曲线的极坐标的表示法及其变换等等,要做到相当的熟练,以及与直角坐标的互换等等,需要重点掌握。

1、 极坐标的概念

5f6ae208ee34724c56c51fbfbbf12fb9.png
09268fc151068e18d98e4cc2d3637c5b.png

一个点在极坐标中有无穷多种表示法,因此我们对长度和角度的参数都进行了限制,这样表示法就唯一了,但是长度为0时,角度是任意的

2、 极坐标与直角坐标的互换

1b85656c3e0a9b66f870fd4ff9f8ebe4.png
6dc48863e8ef4696a4ce6d7223bed857.png
4e8240ad29bbd1252398c7f986bb55ec.png

互化的条件:

1)极点和原点重合,

2)长度单位相同,

3)极轴与x轴的非负半轴重合

3、 极坐标两点的距离公式:

50a6f6899fcc0866e718f36a958b2acd.png

4、 圆的极坐标方程

5a4ef2299c5c381193297ed5659d0529.png
210350623a17c49ef49bbaa02b00f317.png

5、 直线的极坐标方程

df5e6662d7fd31bd2c67d3d317e785bf.png
e4ad300eeb7df80cc498b335951cf318.png

6、 柱坐标系(了解)

10e824a56072a19c18f7b314a48c1164.png

7、 球坐标系(了解)

三、真题演练

4ce851e96fffc9e6291cc0c377778724.png

解析:第一问将参数方程转换成一般方程,然后用方程组来求解,思路没问题,但是要注意计算比较繁琐,需要仔细和耐心。第二问用到了点到直线的距离公式,三角函数的辅助公式等,将三角函数化简后就很容易得出最大值及最小值。

b3c51c05b929f4904ff0c9c1c6d50d43.png
2eb20ccf09451f414cb7b2869adb71be.png

解析:此题第一问属于一般常识题,属于送分题

第二问,直线与圆有三个公共点,我们分两种情况去考虑,一条相切,一条相交,然后将圆心到直线的距离分别计算出来和半径进行比较,计算出的k值可能有几种情况,需要分别去判断是否真的满足条件。这里我们不再进行具体的演算推理,同学们可以自己下去了推理一下。

  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值