差分阻抗为多少_信号完整性分析系列- 第 1 部分:2- 端口差分 TDR(DTDR)

本文详细介绍了如何使用差分TDR(DTDR)测量和分析差分对的各种特性,包括差分阻抗、耦合度、双绞线电缆的特性以及模式转换。通过实例展示了测量过程和影响信号完整性的因素,强调了差分信号在穿越间隙、转换为共模信号时的行为,为高速串行链路设计提供了关键洞察。
摘要由CSDN通过智能技术生成

8f28cf64e6a6e0db26ed20e1da6c9389.png

概述

前文中我们探讨了两条单端带耦合的传输线。每条线都有其自身的阻抗曲线和时延属性, 每条线上都有另一条线上的信号造成的近端和远端噪声。这是对两条不同的线进行描述的一种方法。

是德科技:信号完整性分析系列- 第 1 部分:单端口 TDR​zhuanlan.zhihu.com
228916fff30693184a6882d8b41b1a3d.png
是德科技:信号完整性分析系列- 第 1 部分:端口 TDR/TDT​zhuanlan.zhihu.com
9253b6a84725a67800c3701cf1b17b20.png
是德科技:信号完整性分析系列- 第 1 部分:2- 端口 TDR/ 串扰​zhuanlan.zhihu.com
87b1136edaa364945fbb3c465167c6e4.png

另一个方法是将这同样的两条线作为单个差分对进行描述。两种类型的信号可以在差分对上传播:差分信号和共模信号。在差分信号中,一条线上的电压是另一条线的负值。差分对上的差分信号分量是两条线之间的电压差。这意味着在差分信号中,返回平面上测得的一条线上的电压是另一条线的负值。大多数高速串行链路采用差分信号来发送信息。由于接收机的原因,差分信号比单端信号具有更好的信噪比和抗扰度。

共模信号分量是一个差分对中两个信号的平均值。这意味着共模信号其实是测量一对传输线的共模电压。由于共模信号很少用于携带信息,如果此信号变得过大以至于使得差分接收机饱和,或者超出了外部电缆上的产品,有时会带来一些问题,因为这样的信号会产生电磁干扰(EMI)。

当差分信号在互连上传播时,它会驱动差分对的奇模,差分信号会看到互连的差分阻抗。当共模信号在互连上传播时,它会驱动差分对的偶模,共模信号会看到差分对的共模阻抗。

如需表征差分对,TDR 必须驱动差分信号或共模信号二者之一,并将反射的差分信号或共模信号作为响应进行测量。这需要将两个通道连接到差分对的同一端,且具有等同的两个同步激励,即向被测件发射差分信号或发射共模信号。这可以通过差分 TDR(DTDR) 实现。

如图 49 所示,设置为差分激励时,两个通道的激励完全相反;而设置为共模激励时, 输出电压完全相同。

58fdce72c092417a566b6b5a52ec1969.png

图 49. 表征查分对的配置。

在应用中,为 DTDR 设置一种操作模式。如需将 DTDR 调整为差分激励操作模式,可点击 TDR 设置打开 TDR 设置窗口,然后在 TDR 激励模式中选择差分。

ca19b837d360aab26b1d89a141d5b135.png

图 50. 用于差分测量的 DTDR 设置屏幕。

图 50 所示为调整差分操作模式的设置屏幕。请注意,不要将共模操作模式与能驱动差分对的偶模混淆。屏幕标签上带有共模的“模式”指的是“操作模式”,而不是驱动差分对的模式。

4.2 分别测量与每个差分对相关联的五个阻抗

如果单端传输线是差分对的一部分,那么它确实有三个不同的特性阻抗。这三个阻抗分别是单端阻抗,即当差分对中另一条线上存在恒定电压时的瞬时阻抗;奇模阻抗,即当差分对以奇模方式驱动时线上的瞬时阻抗和

Just when you thought you had mastered Zo, the characteristic impedance of a PCB trace, along comes a data sheet that tells you to design for a specific differential impedance. And to make things tougher, it says things like: “… since the coupling of two traces can lower the effective impedance, use 50 Ohm design rules to achieve a differential impedance of approximately 80 Ohms!” Is that confusing or what!! This article shows you what differential impedance is. But more than that, it discusses why it is, and shows you how to make the correct calculations. Single Trace: Figure 1(a) illustrates a typical, individual trace. It has a characteristic impedance, Zo, and carries a current, i. The voltage along it, at any point, is (from Ohm’s law) V = Zo*i. General case, trace pair: Figure 1(b) illustrates a pair of traces. Trace 1 has a characteristic impedance Z11, which corresponds to Zo, above, and current i1. Trace 2 is similarly defined. As we bring Trace 2 closer to Trace 1, current from Trace 2 begins to couple into Trace 1 with a proportionality constant, k. Similarly, Trace 1’s current, i1, begins to couple into Trace 2 with the same proportionality constant. The voltage on each trace, at any point, again from Ohm’s law, is: V1 = Z11 * i1 + Z11 * k * i2 Eqs. 1 V2 = Z22 * i2 + Z22 * k * i1 Now let’s define Z12 = k*Z11 and Z21 = k*Z22. Then, Eqs. 1 can be written as: V1 = Z11 * i1 + Z12 * i2 Eqs. 2 V2 = Z21 * i1 + Z22 * i2 This is the familiar pair of simultaneous equations we often see in texts. The equations can be generalized into an arbitrary number of traces, and they can be expressed in a matrix form that is familiar to many of you. Special case, differential pair: Figure 1(c) illustrates a differential pair of traces. Repeating Equations 1: V1 = Z11 * i1 + Z11 * k * i2 Eqs. 1 V2 = Z22 * i2 + Z22 * k * i1 Now, note that in a carefully designed and balanced situation, Z11 = Z22 = Zo, and i2 = -i1 This leads (with a little manipulation) to: V1 = Zo * i1 * (1-k)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值