二、回归——logistic regression实现多类别分类的实现

一、one-Versus-All,OVA方法

     一对所有(one-Versus-All,OVA),给定m个类,训练m个二元分类器(将选取任意一类,再将其它所有类看成是一类,构建一个两类分类器)。分类器j使类j的元组为正类,其余为负类,进行训练。为了对未知元组X进行分类,分类器作为一个组合分类器投票。例如,如果分类器j预测X为正类,则类j得到一票。如果他测得X为正类,则类j得到一票。如果测X为负类,则除j以外的每一个类都得到一票(相当于此类的票数减一)。得票最多的指派给X。这种方法简单有效,而且使用类似logistic这种有概率值大小可以比较的情况下,类边界其实是个有范围的值,可以增加正确率。而且当K(类别数量)很大时,通过投票的方式解决了一部分不平衡性问题。

二、官网代码实现

###############################官网示例#######################################
#导入数据
from sklearn import linear_model, datasets  

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2]  # we only take the first two features.
Y = iris.target
print(type(X))
print(type(Y))
X.shape
Y.shape

logreg = linear_model.LogisticRegression(C=1e5)

a = logreg.fit(X, Y)
a.coef_     #返回参数的系数
a.pre
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值