python预测糖尿病_Python预测糖尿病

本文通过一个实战案例介绍了如何使用Python的线性回归模型预测糖尿病。首先,详细介绍了糖尿病数据集,接着讲解了LinearRegression模型的fit()和predict()方法。文章通过代码展示了数据划分、模型训练、预测过程,并分析了模型的回归系数和截距。最后,优化代码以提升可视化效果。
摘要由CSDN通过智能技术生成

今天给大家讲解一个实战案例:如何根据现有数据预测糖尿病。在这个案例开始之前,希望大家回忆一下大学里讲过的线性回归的知识,这是数据挖掘里非常重要的一部分知识。当然,鉴于大家都学过,本篇就不再赘述。

一. 数据集介绍

diabetes dataset数据集

这是一个糖尿病的数据集,主要包括442行数据,10个属性值,分别是:Age(年龄)、性别(Sex)、Body mass index(体质指数)、Average Blood Pressure(平均血压)、S1~S6一年后疾病级数指标。Target为一年后患疾病的定量指标。

输出如下所示:

二、LinearRegression使用方法

LinearRegression模型在Sklearn.linear_model下,它主要是通过fit(x,y)的方法来训练模型,其中x为数据的属性,y为所属类型。

sklearn中引用回归模型的代码如下:

输出的函数原型如下所示:

fit(x, y): 训练。分析模型参数,填充数据集。其中x为特征,y位标记或类属性。

predict(): 预测。它通过fit()算出的模型参数构成的模型,对解释变量进行预测其类属性。预测方法将返回预测值y_pred。

引用搬砖小工053"大神的例子:

运行结果如下所示,首先输出数据集,同时调用sklea

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值