二元函数对xy同时求导_呆哥数学每日一题 ——三角函数求最值

2cf56c1cbff668320840db8d1bfb5fd0.png

如果想要获取往期每日一题电子版,可以加我微信:daigemath166,备注:知乎 每日一题

9f7ee446ed7fc9c78b8ba6b55b480745.png

呆哥解析:

今天的是一道三角函数求最值的题目

首先看到题目要求的东西,我们发现它有三个变量

很明显是不利于我们计算的,所以我们可以减少一个变量

如何减少呢?注意到我们三角形中的一个恒等关系:

d1a5b8b6b8f5f2fa7b62e35b08c90372.png

这样一来,我们就消掉了其中的一个变量

接下来,我们需要做的还是继续消掉变量,为此需要把两个角展开,然后把让最后的结果只留下一个角:

92f81d338e3666473b5e32da80bc52f3.png

这一步提取公因式的目的,就是为了后面我们可以利用另外一个公式:辅助角公式来继续消掉变量:

fa8eb31fb1dfbf9c01986aaf9c83b40f.png

这里的辅助角公式大家也要熟悉一下,是:

dce6b94196474b0b0c51a915b283e7c1.png

我们把前面的系数化用一下,就成功的消掉了剩下的一个变量,变成了单变量,这就是我们最终的目的

怎么变成单变量呢?我们注意到题目要求最大值,所以用正弦函数的上界性化掉:

faf0440f7812a39f1ebe8653fb33d683.png

如此一来,我们就成功地放缩原题目成了单变量上界:

ccb6ffb0985cc0f8888f693b156dcc30.png

现在我们的目的就比较明确了,只需要求这个单变量函数的最大值即可,那么我们先设出函数,同时化简一下:

0aefa63e68445f2c7e71b846a3d6d1f1.png

此处方法我们采取导数法求最值是比较快的:

5e8eec387f3c5e0200c80ba793087be5.png

这里为了求导函数的零点,我们把方程两边平方一下:

2f10b2f758e0f32e2eeb7f2a780c2e1d.png

这里还需要因式分解一下,才可以看出零点

可以看出,分子中后面的因式是没有正根的,而我们题目中要求是锐角三角形,那么零点只能是前面的因式的零点

而我们根据余弦函数的递减性质,就可以知道,原函数最大值,也就是最开始的式子的最大值是:

4b0c452bca8b08fd635b0236b6627529.png

所以最后答案是:

325344f09402118557c3ef150df97244.png

明日预告:

82f864d9fed216cc443cbfa5292bb24a.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值