二元函数对xy同时求导_复变函数学习笔记(5)

本文介绍了复变函数中的Cauchy积分公式及其推论,包括全纯函数的高阶导数公式和Liouville定理。通过举例和证明,阐述了这些理论在复变函数领域的应用。
摘要由CSDN通过智能技术生成

03f104ec00dab21ef06f6d64344e3e65.png

到现在为止复变函数的理论还算友善,只是Cauchy积分定理很难证。不过接下来,一系列震撼我妈的结论就要出现,这就是复变函数与实函数的区别。

(果然我还是喜欢无口系少女www)


Cauchy积分公式,复变函数的导数和一些推论

首先证明Cauchy积分公式,这是全纯函数的一种积分表示式。与实函数不一样的是,在发展了复变函数的积分以后我们才能继续发展导数的更多定理,这是很有趣的。

定理(Cauchy积分公式)

为由可求长简单闭曲线
围成的单连通区域,函数
。则对任意
,有

看到这个

就一定会想到:
。这样的话就可以写出:

然后与要证明的右边相减估计。但是只是在

上积分的话是没办法估计出结果的,所以我们还需要上一篇的绝活把它变成更方便的曲线。这就是下面的证明。

注意到

上是连续的,对
使得
。以
为圆心,
作一个圆
。由Cauchy积分定理:

所以由长大不等式

定理证毕。

有意思的一点是,Cauchy积分公式似乎暗示着,全纯复变函数局部处的值可以决定整体的值。

这个公式的一个较为重要的推论是下面的平均值定理

定理 设函数

为全纯函数,则对任意的

为以
为圆心,半径为
的圆。则由Cauchy积分公式:

就得到结果。

我们注意到如果倒过来用Cauchy积分公式,就可以计算一些复积分。但是现在并不急于做这件事,我们先证明:全纯函数可以求任意阶导数。为此要证明一个引理。这个引理事实上就是对积分号内部求导。

引理

为可求长曲线,
上的连续函数。设
,以及函数
。则
上有任意阶导数,且

证明要用归纳法,很冗长。这里只写出第一步好了。只需要对

估计下面的式子:

计算绝对值内部的表达式:

取足够小的

使得
。则
。设
,则

利用长大不等式得到

趋于零时这个式子趋于零。所以

也稍微提一下归纳递推时的情况。这时会计算出来一个复杂的式子:

上面这个多项式其实可以因式分解出

,算出商式以后把分母除上去就处理好了。

现在在引理里取

为可求长闭曲线。由Cauchy积分公式,对全纯函数
成立:
。这就是一个引理里面说的函数。所以我们立刻得到定理:

定理(高阶导数公式)

为由可求长简单闭曲线围成的单连通区域,函数
。则对任意
,有
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值