叉乘点乘混合运算公式_【国际数学竞赛】任意多边形面积计算公式

c5423cc719b6360f2860ab8d4571c04d.png

对于任意一个多边形,如果已知其各个顶点的坐标

,那么这个多边形的面积为:

,

其中

举个例子(From Wikipedia),比如下图这样一个奇奇怪怪的五边形,其顶点坐标为

13d2e4119cd78d6037d1bdf4e589a983.png

根据上述公式,只需要把各点坐标带入上述公式即得:

是不是感觉很神奇,也不知道对不对,这个大家也可以把上述面积分解验算一下。

上述公式就是Shoelace Theorem,鞋带定理?!

cde674ee440f2d744e2edb332a990049.png

为什么叫Shoelace Theorem,因为这个公式的运算很像鞋带,我们来看看三个顶点时的公式计算,

,就如下图所示:

81e95d077aca1b2e0c5e0790941d8076.png
图:三个顶点时的计算公式,from Wikipedia

对于任意

边形,我们也可以类型的把坐标依次写下来,然后就可以根据公式算出这个多边形的面积了。不过这里有两点需要
注意

(1)对于任意多边形,我们看到的只是各个顶点的坐标,是没有标

的,所以这里我们只需要
任意指定一个顶点为
,然后按照顺时针或者逆时针进行标号就可以了;

(2)因为我们是任意指定一个点为

,且顺时针或者逆时针都可以,所以有时候按照公式计算出来是为负值。但是
面积是一个正值,因此我们公式中是有一个绝对值的;

接下去我们就证明一下Shoelace Theorem,不过在证明之前,我们铺垫一点向量叉乘(cross product)的知识。(如果清楚可以直接看公式证明过程。)

之前我们有介绍过向量点乘(dot product),

注:上式左边是向量的点乘符号,右边是数乘符号。

这里我们在定义一个向量叉乘,

注,向量叉乘得到的是一个新的向量。

其中

是一个单位向量,其方向是垂直
向量所成平面的法向量方向。这里我们可以根据
右手来判断,首先用右手四指(除大拇指外)指向
,然后弯曲转向
,那么大拇指指向的就是
方向,如下图

8073fbee919678826d2cd36af043f5fc.png
图:From Further Pure Mathematics

如果是

,那么方向就跟
刚好相反。

那么向量叉乘怎么算呢?

这里我们就直接给出计算公式了。

如果

,
,

那么,

如果学过矩阵行列式,我们可以用行列式表示:

.

说了这么多的向量叉乘,那么跟面积有什么关系呢?

我们在《三角形面积公式知多少?》一文中提过一个三角形面积公式:

比对一下叉乘公式,我们发现

就是以
两个向量所构成的平行四边形面积。再除以2,就是以
构成的三角形面积了。

接下去我们要用数学归纳法来证明Shoelace Theorem,首先证明三个顶点时定理成立,然后假设

个顶点定理成立,推导
边形时成立。

【1】证明三角形时成立

已知平面坐标系上三个顶点坐标

,我们可以把这三个顶点放到三维空间中,并把点
移动到原点
。那么,

于是,根据向量叉乘的几何意义可知:

注:
(1)把二维平面上的三角形放到了三维空间中,面积保持不变;且把点
移动到了原点,这样计算就方便很多。

(2)为了接下去证明的方便,我们这里没有加绝对值,因为如果计算出来是负值,只需要改变一下计算顺序就可以了。

【2】假设

边形时成立,推导
边形成立

已知条件

边形时成立,
,

其中

对于顶点为

边形,可以分为
边形与一个三角形之和

,

,

,

于是,

其中,


至此,我们就完整的证明了Shoelace Theorem。这个定理在竞赛中还是比较常见的,比如在AMC10/12中,今年2020AMC12A中就有:

5eed08016165e2abeedf8dde7a38e195.png

利用这个定理还是很容易计算的,

45a0a53030316b76f4d6be0b9def082f.png

不知道大家对于这个定理有什么想法,欢迎交流讨论~

如果想看三角形与四边形面积计算公式可看下面两篇文章:

双木止月Tong:【国际数学竞赛】三角形面积公式知多少?​zhuanlan.zhihu.com
453d721585306e98dc4c0f3618c98366.png
双木止月Tong:【国际数学竞赛】四边形面积公式知多少?​zhuanlan.zhihu.com
3f3a65588cca8a67dd0d9289248921bf.png

想了解更多关于国际数学竞赛及课程的知识,可参阅:

双木止月Tong:国际数学竞赛及课程​zhuanlan.zhihu.com
dc6ec3002f56b3731edde7efa929f9fe.png
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2021 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值