从小学起就接触过这种题:已知x+y=2,求xy的最大值。形式可能不一样,但是问题核心是一样的。本文中我们将通过不同的方法来见证数学的伟大之处。
如果把这个问题图形化,可以表述成:已知长方形周长为4,求长方形面积最大值。在没有任何理论支持的情形下,我们通过实际经验得出:长方形变成正方形时,面积相等。此时x=y=1,所以xy最大值为1.

但是数学是严谨的,经验也不一定可靠,随着函数概念的提出,我们用x表示y,得到y=2-x,设xy=t,则t=x(2-x)=-x²+2x,这是一个二次函数,通过研究发现这个函数图像和物理学里面斜向上抛东西的轨迹很像,于是将其命名为抛物线。抛物线有一个最值,上述函数的最值就是1,得到xy的最大值就是1.

但是每次求最值都要写一个函数实在是太麻烦了,为了简便,可以先找出一个规律,然后用这个规律去套那些最值,于是基本不等式出现了。众所周知(a-b)²≥0,展开得到a²+b²≥2ab.这里有个问题,就是左边是两个平方,不会出现负数,而x和y可以是负数,不过显然x,y异号的答案小于x,y同正的答案,所以可以令x,y同时为正。这样x就变成了a²,y就变成了b²,那么显然2ab的最大值是2,即xy的最大值是1.

当你信心满满地想要解决实际问题时,你会发现上面所有的方法都是仅针对特殊情况有用,但现实往往不会这么理想化。如果遇到3个或者4个函数呢?如果条件不再是x+y=2这么简单,而是x²+4y³=y呢?或者更一般地,有一个多元函数z=f(x,y),并且x,y满足条件φ(x,y)=0,那么此时z的极值怎么算?有没有一种更具代表性的方法可以解决上述所有问题?于是,数学家提出了“拉格朗日乘数法”。现在我们仅讨论上面那道题,不考虑大量未知数的情况。
现在假设z=f(x,y)=xy,条件φ(x,y)=x+y-2=0。构造一个函数L(x,y)=f(x,y)+λφ(x,y),分别对x,y,λ求偏导,并使之等于0.

计算得

解出来x=y=1,所以xy的最大值是1.
这时有些“数学无用论”支持者就会说:我用小学方法就可以解决,研究这些有什么用?你要知道,数学从不讨论某个具体问题的解法,数学家更热衷于寻找规律,寻找一类题的解法。简单的方法固然实用,但是一旦遇到复杂情况,就会毫无头绪,而我们之所以要学习这些,就是为了在将来遇到实际问题时能拥有更多选择。
数学就像一个工具箱,如果你只需要一把锯子,那是因为你在造简单手工艺品,如果你要造火箭,你会发现仅仅一个锯子根本不够,甚至你翻遍整个工具箱都找不到合适的工具,这时你就需要通过学习,充实你的工具箱。数学理论永远不会毫无用处,如果你觉得某个理论没有用,那么一定是你的眼界不够,暂时用不着。