不等式约束的拉格朗日乘数法_不等式约束的优化问题

本文介绍了使用拉格朗日乘数法解决带有不等式约束的优化问题,详细阐述了等式约束优化的拉格朗日乘数定理,并通过多个例子进行说明,包括单变量和多变量函数的极值求解。讨论了内部解和边界解的不同必要条件,展示了如何利用Mathematica软件辅助求解。
摘要由CSDN通过智能技术生成

67d52054f8fd08652f03f1f0dcbc2fbf.png

本文动机

本意是在论文阅读中反复遇到不等式约束条件的类似问题,不过可惜地是每次想用的时候,几乎总是卡壳,不能满意地解决此类问题,故在这汇总,加以整理,以期熟练掌握其中细节。
当然也有可能出现周志成老师博客指出的问题
在优化理论,Karush-Kuhn-Tucker (KKT)条件是非线性规划(nonlinear programming)最佳解的必要条件。KKT条件将Lagrange乘数法(Lagrange multipliers)所处理涉及束缚等式的约束优化问题推广至不等式。 在实际应用上,KKT条件(方程组)一般不存在代数解,许多优化算法可供数值计算选用。而我恰好每次试图追寻代数解,这或许是我失败的原因之一。
当然我们可以考虑软件求解,的确是有效策略之一,但是注意也不是万能的,大多数采用人工干预,有时候能化繁为简,反而得到最终求解结果。如果过分依赖反而求不出来,结果有时候也不能轻易相信,至少要适当检验。 否则内置算法出现bug造成的后果也不可估量。

注意:

  • 由于是自学,本文很大部分依赖网络资源,如有读者,慎重阅读。如有错误,欢迎大佬指正。主要参考下面两篇文章:
周老师博客​ccjou.wordpress.com Eureka:Karush-Kuhn-Tucker (KKT)条件​zhuanlan.zhihu.com
b4e851cd78cfbd25cac63de1fe5ea01d.png

十分感谢他们的工作。后面会结合自己体会慢慢写出更好的分析。

  • 解此类不等式当然方法不止一种,比如碰巧可以用一些微调整法。

1.1 问题模型

在数学中, 卡罗需-库恩-塔克条件(英文原名:Karush-Kuhn-Tucker Conditions 常见别名:KKT条件,Kuhn-Tucker条件)是在满足一些有规则的条件下,一个 非线性规划(Nonlinear Programming)问题能有最优化解法的一个 必要条件。这是一个 广义化拉格朗日乘数的成果。
我们的问题的模型:考虑以下 非线式最优化问题
是需要
最小化的函数,其中
不等式约束
等式约束
分别为不等式约束和等式约束的数量。

不等式约束问题的必要和充分条件初见于卡罗需(William Karush)的硕士论文,之后在一份由W.库恩(Harold W. Kuhn)及塔克(Albert W. Tucker)撰写的研讨生论文出现后受到重视。

1.2 必要条件

考虑标准约束优化问题(或称非线性规划):

定义Lagrangian 函数

其中
是对应
的Lagrange乘数,
$是对应
的Lagrange乘数(或称KKT乘数)。KKT条件包括

1.3 等式约束

1.3.1: 等式约束优化问题 (拉格朗日乘数定理)

给定一个目标函数

,我们希望找到
,在满足约束条件
的前提下,使得
有最小值。这个约束优化问题记为


为方便分析,假设
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值