五年级奥数解析(五十一)加法原理和乘法原理
《奥赛天天练》第五十一讲《加法原理和乘法原理》,进一步学习运用加法原理和乘法原理解答比较复杂的计数问题。有关加法原理和乘法原理的简要说明,请点击查阅:
灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的计数问题。本讲在四年级奥数学习的基础上继续学习综合运用两个原理解答稍复杂的此类计数问题。
注意解题时要认真、仔细、有条理地分析问题。计数时要注意区分是分类计数问题、分步计数问题还是综合运用两个原理解答问题。
《奥赛天天练》第51讲,模仿训练,练习1
【题目】:
书架上层有7种不同的故事书,中层有6本不同的科技书,下层有4种不同的画册。如果从书架上任取1本书,有多少种不同的取法?如果从每层各取一本书,有多少种不同的取法?
【解析】:
⑴在书架上任取一本。
7+6+4=17(本)
书架上总共有17本不同的书,所以从书架上任取1本书,有17种不同的取法。
⑵在书架每层各取1本。
分三步完成:
从第一层任取一本,有7种不同的取法;
从第二层任取一本,有6种不同的取法;
从第三层任取一本,有4种不同的取法;
7×6×4=168(种)
所以从每层各取一本书,有168种不同的取法。
《奥赛天天练》第51讲,模仿训练,练习2
【题目】:
4位同学和2位老师排成一排照相,规定老师站在两边,有多少种排法?
【解析】:
分两步完成。
第一步,确定学生的位置,按照乘法原理,不同排法有:
4×3×2×1=24(种)。
第二步,确定老师的位置,排在两边,有2种排法。
所以,全部排好,共有不同的排法:
24×2=48(种)。
《奥赛天天练》第51讲,巩固训练,习题1
【题目】:
由1,2,3,4这四个数字可以组成许多不同四位数,将它们从小到大依次排列,那么4123是第几个数?(数字不能重复)
【解析】:
根据乘法原理,按从小到大排列,千位上是1的四位数有:
3×2×1=6(个)
同理,依次千位上是2、3的四位数也各有4个,所以,依次千位上是1、2、3开头的四位数共有:3×6=18(个)。
4123是千位上是4的最小的四位数,所以将组成的所有四位数从小到大依次排列,4123是第19个数。
《奥赛天天练》第51讲,巩固训练,习题2
【题目】:
用数字0,1,2,3,4这五个数字可以组成多少个三位数(数字可以重复)?如果组成没有重复数字的三位数呢?
【解析】:
先分步确定组成的三位数各个数位上数字的填法种数,再根据乘法原理,求出组成的三位数的个数。
⑴数字可以重复的三位数。
百位上数字只能填非零的数字,有4种填法,十位、个位上数字各有5种填法。可以组成三位数:4×5×5==100(个)。
⑵没有重复数字的三位数。
先确定百位上数字,只能填非零的数字,有4种填法;
确定好百位数字后,十位上数字可以选剩下的4个数字,有4种填法;
个位数字只能选剩下的3个数字,有3种填法。
可以组成三位数:4×4×3=48(个)。
注:确定数字(人或其它物体)的位置,应先确定有特殊要求的,再确定没有特殊要求的,以便于解题。
《奥赛天天练》第51讲,拓展提高,习题1
【题目】:
舰船信号兵用红、黄、蓝三面旗从上到下挂在旗杆上表示不同的信号,每次可以任意挂一面、两面、三面,不同的顺序表示不同的信号,一共可以表示多少种不同的信号?
【解析】:
表示信号的方法可以分为三类:
一、挂一面旗,有3种不同挂法。
二、分两步,挂两面旗。
挂第一面旗有三种不同的选择,第二面旗有剩下2种不同的选择。共有挂法:
3×2=6(种)。
三、分三步,挂三面旗。
挂第一面旗有三种不同的选择,挂第二面旗有剩下2种不同的选择,挂第三面旗只剩下1种挂法。共有挂法:
3×2×1=6(种)。
所以,一共可以表示不同的信号:
3+6+6=15(种)。
《奥赛天天练》第51讲,拓展提高,习题2
【题目】:
5人排队,甲不能站排头,乙不能站排尾,共有多少种不同的排法?
【解析】:
这题可以用排除法解题。
①先求出有甲站排头或乙站排尾时共有多少种排法。
甲站排头共有排法:4×3×2×1=24(种)。
乙站排尾共有排法:4×3×2×1=24(种)。
甲站排头同时乙站排尾,共有排法:3×2×1=6(种)。
运用容斥原理,可以求出有甲站排头或乙站排尾时共有排法:
24×2—6=42(种)。
②再根据乘法原理,5人排队共有排法:5×4×3×2×1=120(种)。
所以,甲不能站排头,乙不能站排尾,共有不同的排法:
120-42=78(种)。