spark 数据框 删除列_pandas 常用的数据处理函数

97188e78c61bf4bd4664980ee19df1f7.png
在数据分析过程中,首先就是对数据进行清洗和处理,而使用 python 进行处理的朋友们,对 pandas 包肯定是熟悉不过的了。pandas 的功能很强大,基本的数据处理操作都可以找到对应函数去使用,想全面了解的朋友可以查看相关文档。在这里,通过这篇文章分享整理了自己平时常用的函数和经验:

1.数据查看

数据量过大时,直接打印变量无法全面进行展示,这时候可以通过函数对数据框中前后几条数据进行查看,方便我们初步去了解数据的一个大体情况:

import 

52d25145d7258b92caacbd39e77d5eed.png

1.1 查看数据前/后几行

data.head(3) #不写几行默认5行
data.tail(2)

136faeae5d75e04c3720e9a404a6357b.png

1.2 查看数据索引

data.index

bae8ed8450a3b1ac7aa3b689e3a6ef3e.png

1.3 查看列名

data.columns

5af2482931d34664a1b0fffa0643e4a6.png

1.4 查看数据类型

data.dtypes

0afcf5e4c7bfa33655947034c115ab02.png

1.5 查看数据的基本分布情况

只对数值类型的字段有作用,包括了计数,均值,标准差,最大最小值和四分位数

data.describe()

7ad6c56cfbc971d5193e3816ae9683bf.png

2. 数据筛选

数据切片是处理函数中经常需要使用到的操作,相类似于 sql 语句中的 select。ps:同样使用以上面数据框 data 作为示例,下同。

2.1 列切片

data['A']
data[['A', 'B']]  # 同时选择多列

dd41d9263e63c44ed05767ec64b5a706.png

2.2 行切片

data[2:4]     # 选择第2到第三3行
data['b':'c'] # 选择多行

6b28780bc73a3ca46f8f82d8994eb94e.png

2.3 同时对行列进行切片

# 通过标签进行筛选
data.loc['a':'c', ['A', 'C']]
data.loc[['a','c'], ['A', 'C']]

6a67fb34d155158dda1a9c51901034a7.png
# 通过位置进行筛选
data.iloc[3]       # 不指定列的话,默认是选择行,单独选择某一行的话返回的不是一个数据框
data.iloc[2:4]     # 返回一个数据框
data.iloc[:, 1]    # 选择单列,返回的不是一个数据框
data.iloc[:, 1:3]  # 选择多列
data.iloc[[1, 2, 3], [0, 2]] # 选择不连续的多行多列

e3e1ba3ff4d1b2de565664e489a2fb66.png

ca1b8777ad6d73decd246671713a485d.png

2.4 条件筛选

# 单条件
data[data['C'] >= 30 ]
# 单列多条件
data[data['E'].isin(['小白', '小明'])]
# 多列多条件
data.loc[(data['B']>0.5) & (data['C']<30)]

9dce7e60dd0f69b505d299df2cccd74a.png

3. 数据增加

3.1 添加新的列

# 增加一列同样的值
data['F'] = 1  
# 增加一列不一致的值(可以是series也可以是list)
data['G'] = pd.Series([11, 22, 33, 44], index=['a', 'b', 'c', 'd'])
data['H'] = [1, 2, 3, 4]

9ce241fbba3d15de9a0d93105e022aec.png

3.2 添加新的行

append

data.append(data.iloc[2:4])
data.append(data.iloc[3], ignore_index=True)  #参数ignore_index=True,索引重新排列, 默认是False

aafd22e113c33757ccf196cad65fa3fa.png

concat: 同样有ignore_index参数,可以有字段不一致的情况。PS:合并的对象必须是dataframe

pd.concat([data, data.iloc[1:3]], ignore_index=True)
data_NA = pd.concat([data, data.iloc[[1, 2, 3], [0, 2]]], ignore_index=True)

ea7494124726bad632f28711cb282ba3.png

72d5b1e9e7d6a37f5370ad335e35099f.png

3.3 数据连接

merge: 两个数据表连接,类似于 sql 语句中的 join,字段可以不一致

pd.merge(data, data.iloc[[1, 2, 3], [0, 2]], on='A')

1c30b448ab9a71b631add76a0e67788f.png

4. 数据修改

dataframe 中的数据都是可以进行修改的,具体如下所示:

# 修改某一列
data['F'] = data['F'] + 1
# 修改某个值
data['F'].iloc[2] = 23

f93a29d70086a466db4b17e1fb9435d1.png

e912b3638b4e872829a53c045561009c.png

294b88d4534afcac9633c6205d0852c1.png

5. 数据删除

5.1 删除列

data_drop = data.drop('A', axis=1)  # 此时的data仍然是完整的

6e7c81ffefc0c0445d5ffc7530f18f9b.png

5.2 删除行

data_drop = data.drop('a', axis=0) # 对于满足条件的索引列表进行删除

2cdc3e03d0f08b096e97647ad8dfeb91.png

6. 常见数据的读入写出

6.1 Excel

# 读入
data = pd.read_excel('data.xlsx', encoding='utf8')
# 写出
data.to_excel('data.xlsx', encoding='utf8', index=None)

6.2 CSV

# 读入
data = pd.read_csv('data.csv', encoding='utf8')
# 写出
data.to_csv('data.csv', encoding='utf8', index=None)

6.3 txt

def load_data(file_path, encoding='utf8'):
    """
    导入数据
    :param file_path: 数据存放路径
    :return: 返回数据列表
    """
    f = open(file_path, encoding=encoding) 
    data = []
    for line in f.readlines():
        row = []  # 记录每一行
        lines = line.strip().split("t")  # 各字段按制表符切割
        for x in lines:
            row.append(x)
        data.append(row)
    f.close()
    return data

data = load_data('data.txt', encoding='utf8')
data = pd.DataFrame(data[1:], columns=data[0])  # 第一行为字段名

7. 处理异常值、重复值

7.1 NA

# 查看nan值分布的情况
pd.isna(data_NA)
pd.isna(data_NA['H'])

e081ecb1b167e9580faefad62da8cb24.png
# 将nan填充成指定的值
data_NA['B'] = data_NA['B'].fillna(0)
data_NA = data_NA.fillna(0)

7dd1b2ef8d09f70d59f3b3231593d7fe.png
# 将数据中nan的数据全部替换成None,这样int类型或str类型的数据入mysql数据库的时候都显示是null
data_NA = pd.concat([data, data.iloc[[1, 2, 3], [0, 2]]], ignore_index=True)
data_NA_1 = data_NA.where(data_NA.notnull(), None)

6259502d8cf46bf03ef6044efb8060cd.png

1d98b7646041bd497bf190af652d32fd.png
# 删除nan值  
data_NA.dropna(how='any', axis=0)  # 只要出现 nan 的行就删除, 删除列则改为 axis=1
data_NA.dropna(subset=['B'])            # 对指定列出现 nan 的行进行删除

4363b537d6aa4ceb7c63948918008379.png

7.2 重复值

# 查看重复数据
data.duplicated()
data.duplicated(['D'])

# 对全部字段进行去重
data_dropdup = data.drop_duplicates() 

# 对指定字段进行去重操作
data_dropdup = data.drop_duplicates(['C', 'F'])  

73b61f9a2d3a67b5638e799ad27627a2.png

8. dataframe 的属性

8.1 数据框的索引重排列

适用于数据框筛选、合并等导致索引不连续的情况

data = data.reset_index(drop=True)

dcf654f9b837d375c9ed92c1bf34920a.png

8.2 数据框的列名修改

data.columns = ['A1', 'B1', 'C1', 'D1', 'E1', 'F1', 'G1', 'H1']

74231fee9aace09dd678ec3091d0f42b.png

8.3 修改数据框或者指定列的类型

data['B1'] = data['B1'].astype('int')  # int 类型导致小数点后面被舍弃了

6bae0cd80df0b1ed6e9daae4d975928d.png

9. mysql数据库操作

import sqlalchemy

# 读取
conn = sqlalchemy.create_engine('mysql+pymysql://用户名:密码@IP/数据库名?charset='数据库编码')
da = pd.read_sql("SELECT * FROM 表名;",conn)  #双引号里可以放入sql语句
Ps:若是类似LIKE '%文字%' 的结构,则需要改成LIKE '%%文字%%'

# 写入
 pd.io.sql.to_sql(dataframe, '表名', conn, schema='数据库名', if_exists='append', index=False) # index=False表示不把索引写入

10. 遍历计算

只将遍历计算作用在某一列上

data['G1'] = data['G1'].astype(str).apply(lambda x : 'ZZ'+str(x))  # spply里面可以定义匿名函数

7b371012f1f65aaa10c0047440ab05c5.png

直接将整个dataframe的每一列都套用函数进行遍历计算

data = data.apply(lambda x : str(x)+1) # 只能用于当操作可以适用于每个字段的类型的情况

11. 分组和统计个数

import pandas as pd
import numpy as np
data = pd.DataFrame({'H':np.random.randint(2, 8, size=10), 
                     'J':np.random.randint(0, 5, size=10),
                     'K':np.random.uniform(size=10)})

d7d59b53a94df09731e29a6dc8921a1d.png
# 分组
data.groupby('H').sum()        # 对H进行分组并展示剩余数值类型列的和
data.groupby('H')['J'].sum()   # 对H进行分组并展示相对应的J列的和
data.groupby(['H', 'J']).sum() # 对H,J进行分组并展示相对应的剩余数值类型列的和

d0b857b9122933e06884c9be89a098c7.png
# 统计data中H列每个值出现的次数
result1 = data['H'].value_counts()       # 按照计数量的大小排序
以下和上面得到结果一致
result2 = data.groupby('H')['H'].count() # 对H进行分组并展示相对应的H列的个数

d5661cb11f998ded9213876c8c4dbbe6.png

12. 数据塑性——长宽表变换

import pandas as pd
import numpy as np
data_start = pd.DataFrame({
"城市":["广州","深圳","上海","杭州","北京"],
"销售1部":[877,932,970,340,234],
"销售2部":[453,899,290,213,555],
"销售3部":[663,380,223,900,330],
"销售4部":[505,800,200,252,330] })

6ace3beddcae770e4ed02db340c99b0c.png

12.1 宽变长

在数据分析中,经常需要长表数据去绘制图表或者训练模型,而当你拿到的数据数汇总后的表格时,便可以采用宽表转长表的方式

data_long = data_start.melt(
id_vars=["城市"],    # 保留的字段
var_name="部门",     # 分类变量
value_name="数量"    # 度量值字段
 )

d8db1f409f593d7fc76b29e138f65851.png

12.2 长变宽

用于数据汇总,比较不常用

data_long.pivot_table(
index=["城市"],         #行(可以是多类别变量)
columns=["部门"],       #列(可以是多类别变量)
values=["数量"]         #值
     )

18fc697ffb8d0ae835dd76a6ed94678d.png

关于 pandas 数据处理的常用操作就分享到这里啦,有其他常用便捷的方法欢迎在下方留言哦~

如果对你有用的话,随手点个赞哟

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值