python神经网络自动优化_莫烦python|Tensorflow笔记--结果可视化、加速神经网络训练、优化器...

结果可视化 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # 添加一个神经层,定义添加神经层的函数 def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) # in_size代表行/输入层 biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases # Wx_plus_b代表W*x+b if activation_function is None: # 如果没有激励函数,即为线性关系,那么直接输出,不需要激励函数(非线性函数) outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) # 把这个值传进去 return outputs # Make up some real data x_data = np.linspace(-1, 1, 300)[:, np.newaxis] # 输入,np.float32改变数组的长度显示,linspace创建一个从-1到1的等差数列,默认为50个数,这里规定了要生成300个数,并且使用[:, np.newaxis]将数组转换为列向量,[np.newaxis,:]可转换为行向量 noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32) # 生成一个均值/中心为0,标准差/宽度为0.05的正太分布作为噪点/干扰点,它的格式为x_data,使得我们想要预测的函数更加接近实际情况;astype转换数据类型格式为float32 y_data = np.square(x_data) - 0.5 + noise # x的平方减去一个任意值再加上噪点 ##plt.scatter(x_data, y_data) ##plt.show() # define placeholder for inputs to network xs = tf.placeholder(tf.float32, [None, 1]) # 占位符,保存数据的利器,float32数据类型,[None,1]表示列为1,行不定的列向量;xs表示x_Session,因为placeholder是与Session一起用的,它在使用的时候和前面的variable不同的是在session运行阶段,需要给placeholder提供数据,利用feed_dict的字典结构给placeholdr变量“喂数据”;placeholder的语法:tf.placeholder(dtype, shape=[None,None] [, name=None]) ys = tf.placeholder(tf.float32, [None, 1]) # add hidden layer l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu) # 创建一个隐藏层l1,输入为xs,输入的层数/神经元的个数1=输入层,输出的层数10=隐藏层中神经元的个数 # add output layer prediction = add_layer(l1, 10, 1, activation_function=None) # 预测值;定义输出层,输入为l1=前一层隐藏层的输出,输入的层数为10=隐藏层神经元的个数,输出的层数为1=输出一般只有1层 # the error between prediction and real data loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1])) # 计算预测值prediction与真实值ys的误差:所有的平方差相加再求平均;reduction_indices = [1]表示相加的方法,[1]表示行求和,[0]表示列求和,具体解释见下文 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # 机器要学习的内容,使用优化器提升准确率,学习率为0.1<1,表示以0.1的效率来最小化误差loss # important step sess = tf.Session() # 定义Session,并使用Session来初始化步骤 # tf.initialize_all_variables() no long valid from # 2017-03-02 if using tensorflow >= 0.12 if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: init = tf.initialize_all_variables() else: init = tf.global_variables_initializer() sess.run(init) # plot the real data # 绘制真实数据 fig = plt.figure() # 生成一个画框/画布 ax = fig.add_subplot(1,1,1) # 将画框分为1行1列,并将图 画在画框的第1个位置 ax.scatter(x_data, y_data) # 画散点图 plt.ion() # 交互绘制功能,用于连续显示;本次运行时请注释掉这条语句,全局运行不需要注释掉 plt.show() # 显示所绘制的图形,但是他只显示当前运行时的图像,不会一直显示多次 for i in range(1000): # 训练1000次 # training sess.run(train_step, feed_dict={xs: x_data, ys: y_data}) # 给placeholder喂数据,把x_data赋值给xs if i % 50 == 0: # 每50步输出一次机器学习的误差 # to visualize the result and improvement 可视化结果与改进 try: ax.lines.remove(lines[0]) # 抹去前一条绘制的曲线,在这里我们要先抹去再绘制,防止第一次运行时报错,我们使用try语句 except Exception: pass prediction_value = sess.run(prediction, feed_dict={xs: x_data}) # plot the prediction # 绘制预测数据 lines = ax.plot(x_data, prediction_value, 'r-', lw=5) # x轴数据,y轴数据,红色的线,线的宽度为5 plt.pause(1) # 绘制曲线的时间间隔为1秒

结果

散点图:

训练结果

加速神经网络训练

把这些数据拆分成小批小批的, 然后再分批不断放入 NN 中计算,不会丢失太多的准确率。

Momentum(常用)

AdaGrad

tf.train 提供了一组有助于训练模型的类和函数。

Optimizer基类提供了计算损失梯度的方法,并将梯度应用于变量。子类集合实现了经典的优化算法,如GradientDescent和Adagrad。

您永远不会实例化Optimizer类本身,而是实例化其中一个子类。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值