用VS2015导入工程时出现error MSB8020错误 参考文章用VS2012导入工程时出现error MSB8020错误https://blog.csdn.net/a1915200342/article/details/53612632
Opencv3.4.11与VS2015配置 参考文章OpenCV学习笔记(一)——OpenCV3.1.0+VS2015开发环境配置https://www.cnblogs.com/linshuhe/p/5764394.html跟着一步一步来就没问题,前提是VS2015需要安装成功…opencv安装包链接:https://pan.baidu.com/s/16mNWkMaQWxa2B5qGKMZBZQ提取码:la82官网:http://opencv.org/...
Visual Studio 2015完全卸载 参考文章彻底卸载VS2015+安装VS2010(别具一格)https://blog.csdn.net/jolin678/article/details/99620183这一篇的第四步是很多方法中没有提到的,可以参考使用~卸载工具TotalUninstaller——针对VS2015链接:https://pan.baidu.com/s/1yQOjhQL6jsojlpgh8vKdBA提取码:w9mi需要注意,一次性可能卸不完全,有时候会退出来,因此可以多进行几次...
Visual Studio2015专业版安装 参考文章:Visual Studio 2015专业版安装激活图文教程https://blog.csdn.net/ywb201314/article/details/50599952安装包:链接:https://pan.baidu.com/s/1y20nlYvq4KIYRoOZspuboA提取码:dmbo需要注意的点:在选择功能部分,不需要全选。根据自己需要,在默认已选的基础上添加即可,因我要用到C++,所以在默认的基础上添加了编程语言中的VC++选项。系统默认已选的不要去掉,可能会出错。.
Python中__init__的理解 参考博客版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/luzhan66/article/details/82822896在Python中定义类经常会用到__init__函数(方法),首先需要理解的是,两个下划线开头的函数是声明该属性为私有,不能在类的外部被使用或访问。而__init__函数(方法)支持带参数类的初始化,也可为声明该类的属性(类中的变量)。__init__函数(方法)的第一.
Python程序执行顺序 参考博客Python程序执行顺序Python的代码执行顺序1.python程序是顺序执行的,不同于C中从main入口例如以下代码,这里虽然有个main函数,但是最先输出的不是“main”而是“test1”:#test1print ("test1") # 第1步def Fun(): # 第7步 print ("Fun") # 第8步def main(): # 第4步 pri.
【论文阅读】基于光流的快速人体姿态估计 文献:周文俊,郑新波,卿粼波,熊文诗,吴晓红.基于光流的快速人体姿态估计.计算机系统应用,2018,27(12):109–115.http://www.c-s-a.org.cn/1003-3254/6665.html目录一、研究目的及意义二、研究方法1、方法概述2、视频帧姿态相关性分析3、基于光流的快速人体姿态估计框架4、算法改进(1)自适应关键帧检测算法(2)关键点局部融合优化三、实验1、实验设置2、实验结果(1)定性比较(2)定量比较四...
【论文阅读】Pose Flow: Efficient Online Pose Tracking(姿势流:高效的在线姿势跟踪) 一、介绍1、多人姿态跟踪方法(1)自顶向下:在每帧中 检测 人的proposals→关键点→相邻帧相似性 跟踪整个视频;(2)自下而上:在每帧中 生成 关键点候选点→时空图→求解整数线性规划将时空图分为子图→每个子图对应人体姿势轨迹。2、问题与解决(1)由于帧退化(例如由于快速运动而模糊)、截断或遮挡,单个帧中的姿态估计可能不可靠→需要关联跨帧检测实例来共享时间信息,从而减少不确定性;(2)高效的在线姿态跟踪方法→以改进的RMPE进行姿态估计,并提出两种新技术:姿态流建立(...
Win10+Tensorflow+OpenPose安装过程及问题解决 参考文章主要参考安装教程Win10+Tensorflow+OpenPose超超超详细安装及各种遇到的问题解决深度学习tf-pose-estimation人体姿态识别实现教程人体姿态识别–Openpose+Tensorflowgit clone时遇到问题git clone 显著提速,解决Github代码拉取速度缓慢问题pip install安装遇到问题pip 安装库时速度很慢的解决方法pip和conda添加国内清华镜像源(亲测有效)...
【论文阅读】基于深度神经网络的人体运动姿态估计与识别 研究内容:本文以估计与识别羽毛球运动员运动姿态为背景,设计了一套人体姿态评估系统,用于羽毛球运动员运动过程中人体姿态的估计和识别,并根据人体标准姿态库给出评估结果。关键词:人体姿态估计与识别,羽毛球,深度神经网络,局部评估,相似度一、绪论1、研究背景运动过程中,标准的运动姿态不仅可以决定运动的效果,也可以最大限度保护运动员不受伤害。早期的人体动作识别都需要借助外接设备的辅助,非常不方便,随着机器学习和深度学习的发展,使计算机可以仅通过摄像头等设备就能够感知人体动作。在人体动作识别中,首先最关键的
【论文阅读】VIBE 基于视频的人体3D形状和姿态估计 论文原文:https://arxiv.org/pdf/1912.05656.pdf一、介绍1、之前的方法与局限性方法将室内3D数据集与具有2D地面真实或伪地面真实关键点标注的视频相结合;局限性室内三维数据集在对象数量、运动范围和图像复杂度方面受到限制; 用地面真实二维姿态标记的视频量仍然不足以训练深层网络; 伪地面真实二维标签对于三维人体运动建模不可靠。2、现有方法的问题缺乏带标注的3D人体姿态和形态估计的数据集 现有的方法不够完善,无法捕获到人类实际运动的复杂性和可变性,
【论文翻译】VIBE 基于视频的人体3D形状和姿态估计 人体运动是理解行为的基础。 尽管在单幅图像的三维姿态和形状估计方面取得了进展,但现有的基于视频的方法由于缺乏用于训练的地面真实三维运动数据而无法产生准确和自然的运动序列。 为了解决这个问题,我们提出了“用于身体姿势和形状估计的视频推理”(VIBE),它利用了现有的大规模运动捕获数据集(AMASS)和未配对的、野外的2D关键点注释。 我们的主要创新是一个对抗性的学习框架,它利用聚集来区分真实的人体动作和由我们的时间姿势和形状回归网络产生的动作。 我们定义了一种新的具有自我注意机制的时态网络体系结构
【论文阅读】RMPE 区域多人姿态估计 论文原文:https://arxiv.org/abs/1612.00137文章目录摘要1、提出背景2、RPME简介一、介绍1、方法和目标2、已有方法问题说明3、RMPE框架摘要1、提出背景复杂环境下的人姿势估计具有挑战性。虽然最先进的人体探测器已经表现出良好的性能,但是在定位和识别方面的小错误是不可避免的,这些错误可能会导致单人姿势估计器(SPPE)的失败,尤其是对于完全依赖于人体检测结果的方法。2、RPME简介区域多人人体姿态估计框架,以便在存在不精确人体框时进行估计。框架主要组成对称空
TensorFlow学习笔记——(13)RNN、LSTM、GRU实现股票预测 文章目录一、RNN股票预测二、LSTM股票预测1、长短记忆网络介绍2、TF描述LSTM层3、实验代码三、GRU股票预测1、GRU网络介绍2、TF描述GRU层3、实验代码一、RNN股票预测import numpy as npimport tensorflow as tffrom tensorflow.keras.layers import Dropout, Dense, SimpleRNNimport matplotlib.pyplot as pltimport osimport pandas
TensorFlow学习笔记——(12)Embedding编码方法 一、Embedding编码1、概念在前面的例子中,都采用了独热码的编码方式,独热码的位宽要与词汇量一致,如果词汇量增大时,非常浪费资源,因此自然语言处理中,有专门一个方向在研究单词的编码。2、TF描述词汇表大小:编码一共要表示多少个单词编码维度:用几个数字表示一个单词Embedding对于输入特征的维度也有要求:3、实例代码(1)一个字母预测import numpy as npimport tensorflow as tffrom tensorflow.keras.layers
TensorFlow学习笔记——(11)循环神经网络 一、循环核首先回顾下卷积神经网络:卷积核:参数空间共享,卷积层提取空间信息。卷积神经网络:借助卷积核提取空间特征后,送入全连接网络。然后引入循环核:循环核:参数时间共享,循环曾提取时间信息。循环核具有记忆力,通过不同时刻的参数共享,实现了对时间序列的信息提取循环核表示为下面结构,中间圆柱是记忆体,可以设定记忆体的个数,改变记忆容量,当记忆体个数被指定时,输入xt、输出yt维度被指定,周围这些待训练参数(Why,Whh,Wxh)的维度也就被限定了。记忆体内存储着每个时刻的状态信息ht,
TensorFlow学习笔记——(10)经典卷积网络 文章目录一、概述二、LeNet1、网络介绍2、完整代码三、AlexNet1、网络介绍2、主要代码四、VGGNet1、网络介绍2、主要代码五、InceptionNet1、网络介绍2、完整代码六、ResNet1、网络介绍2、完整代码七、总结一、概述二、LeNet1、网络介绍卷积神经网络的开篇之作,通过共享卷积核减少了网络的参数。在统计卷积网络层数时,一般只统计卷积计算层和全连接计算层,其余操作可以认为是卷积计算层的附属。LeNet一共有五层网络,网络结构如下:主要代码如下:2、完整代码