- 博客(67)
- 资源 (7)
- 收藏
- 关注
转载 用VS2015导入工程时出现error MSB8020错误
参考文章用VS2012导入工程时出现error MSB8020错误https://blog.csdn.net/a1915200342/article/details/53612632
2020-10-07 15:15:42 1176 1
转载 Opencv3.4.11与VS2015配置
参考文章OpenCV学习笔记(一)——OpenCV3.1.0+VS2015开发环境配置https://www.cnblogs.com/linshuhe/p/5764394.html跟着一步一步来就没问题,前提是VS2015需要安装成功…opencv安装包链接:https://pan.baidu.com/s/16mNWkMaQWxa2B5qGKMZBZQ提取码:la82官网:http://opencv.org/...
2020-10-07 15:12:21 294
转载 Visual Studio 2015完全卸载
参考文章彻底卸载VS2015+安装VS2010(别具一格)https://blog.csdn.net/jolin678/article/details/99620183这一篇的第四步是很多方法中没有提到的,可以参考使用~卸载工具TotalUninstaller——针对VS2015链接:https://pan.baidu.com/s/1yQOjhQL6jsojlpgh8vKdBA提取码:w9mi需要注意,一次性可能卸不完全,有时候会退出来,因此可以多进行几次...
2020-10-07 15:03:50 1447
转载 Visual Studio2015专业版安装
参考文章:Visual Studio 2015专业版安装激活图文教程https://blog.csdn.net/ywb201314/article/details/50599952安装包:链接:https://pan.baidu.com/s/1y20nlYvq4KIYRoOZspuboA提取码:dmbo需要注意的点:在选择功能部分,不需要全选。根据自己需要,在默认已选的基础上添加即可,因我要用到C++,所以在默认的基础上添加了编程语言中的VC++选项。系统默认已选的不要去掉,可能会出错。.
2020-10-07 14:57:47 288
转载 Python中__init__的理解
参考博客版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/luzhan66/article/details/82822896在Python中定义类经常会用到__init__函数(方法),首先需要理解的是,两个下划线开头的函数是声明该属性为私有,不能在类的外部被使用或访问。而__init__函数(方法)支持带参数类的初始化,也可为声明该类的属性(类中的变量)。__init__函数(方法)的第一.
2020-09-13 22:49:36 85
转载 Python程序执行顺序
参考博客Python程序执行顺序Python的代码执行顺序1.python程序是顺序执行的,不同于C中从main入口例如以下代码,这里虽然有个main函数,但是最先输出的不是“main”而是“test1”:#test1print ("test1") # 第1步def Fun(): # 第7步 print ("Fun") # 第8步def main(): # 第4步 pri.
2020-09-13 22:44:17 1963
原创 【论文阅读】基于光流的快速人体姿态估计
文献:周文俊,郑新波,卿粼波,熊文诗,吴晓红.基于光流的快速人体姿态估计.计算机系统应用,2018,27(12):109–115.http://www.c-s-a.org.cn/1003-3254/6665.html目录一、研究目的及意义二、研究方法1、方法概述2、视频帧姿态相关性分析3、基于光流的快速人体姿态估计框架4、算法改进(1)自适应关键帧检测算法(2)关键点局部融合优化三、实验1、实验设置2、实验结果(1)定性比较(2)定量比较四...
2020-09-13 18:33:49 1564 2
原创 【论文阅读】基于深度神经网络的人体运动姿态估计与识别
研究内容:本文以估计与识别羽毛球运动员运动姿态为背景,设计了一套人体姿态评估系统,用于羽毛球运动员运动过程中人体姿态的估计和识别,并根据人体标准姿态库给出评估结果。关键词:人体姿态估计与识别,羽毛球,深度神经网络,局部评估,相似度一、绪论1、研究背景运动过程中,标准的运动姿态不仅可以决定运动的效果,也可以最大限度保护运动员不受伤害。早期的人体动作识别都需要借助外接设备的辅助,非常不方便,随着机器学习和深度学习的发展,使计算机可以仅通过摄像头等设备就能够感知人体动作。在人体动作识别中,首先最关键的
2020-09-13 15:10:37 24833 2
原创 【论文阅读】Pose Flow: Efficient Online Pose Tracking(姿势流:高效的在线姿势跟踪)
一、介绍1、多人姿态跟踪方法(1)自顶向下:在每帧中 检测 人的proposals→关键点→相邻帧相似性 跟踪整个视频;(2)自下而上:在每帧中 生成 关键点候选点→时空图→求解整数线性规划将时空图分为子图→每个子图对应人体姿势轨迹。2、问题与解决(1)由于帧退化(例如由于快速运动而模糊)、截断或遮挡,单个帧中的姿态估计可能不可靠→需要关联跨帧检测实例来共享时间信息,从而减少不确定性;(2)高效的在线姿态跟踪方法→以改进的RMPE进行姿态估计,并提出两种新技术:姿态流建立(...
2020-09-01 17:45:10 973
原创 Win10+Tensorflow+OpenPose安装过程及问题解决
参考文章主要参考安装教程Win10+Tensorflow+OpenPose超超超详细安装及各种遇到的问题解决深度学习tf-pose-estimation人体姿态识别实现教程人体姿态识别–Openpose+Tensorflowgit clone时遇到问题git clone 显著提速,解决Github代码拉取速度缓慢问题pip install安装遇到问题pip 安装库时速度很慢的解决方法pip和conda添加国内清华镜像源(亲测有效)...
2020-08-30 11:50:56 2716 9
原创 【论文阅读】VIBE 基于视频的人体3D形状和姿态估计
论文原文:https://arxiv.org/pdf/1912.05656.pdf一、介绍1、之前的方法与局限性方法将室内3D数据集与具有2D地面真实或伪地面真实关键点标注的视频相结合;局限性室内三维数据集在对象数量、运动范围和图像复杂度方面受到限制; 用地面真实二维姿态标记的视频量仍然不足以训练深层网络; 伪地面真实二维标签对于三维人体运动建模不可靠。2、现有方法的问题缺乏带标注的3D人体姿态和形态估计的数据集 现有的方法不够完善,无法捕获到人类实际运动的复杂性和可变性,
2020-08-21 23:03:50 4926 1
翻译 【论文翻译】VIBE 基于视频的人体3D形状和姿态估计
人体运动是理解行为的基础。 尽管在单幅图像的三维姿态和形状估计方面取得了进展,但现有的基于视频的方法由于缺乏用于训练的地面真实三维运动数据而无法产生准确和自然的运动序列。 为了解决这个问题,我们提出了“用于身体姿势和形状估计的视频推理”(VIBE),它利用了现有的大规模运动捕获数据集(AMASS)和未配对的、野外的2D关键点注释。 我们的主要创新是一个对抗性的学习框架,它利用聚集来区分真实的人体动作和由我们的时间姿势和形状回归网络产生的动作。 我们定义了一种新的具有自我注意机制的时态网络体系结构
2020-08-20 23:10:15 3510
原创 【论文阅读】RMPE 区域多人姿态估计
论文原文:https://arxiv.org/abs/1612.00137文章目录摘要1、提出背景2、RPME简介一、介绍1、方法和目标2、已有方法问题说明3、RMPE框架摘要1、提出背景复杂环境下的人姿势估计具有挑战性。虽然最先进的人体探测器已经表现出良好的性能,但是在定位和识别方面的小错误是不可避免的,这些错误可能会导致单人姿势估计器(SPPE)的失败,尤其是对于完全依赖于人体检测结果的方法。2、RPME简介区域多人人体姿态估计框架,以便在存在不精确人体框时进行估计。框架主要组成对称空
2020-08-19 22:25:12 1743 2
原创 TensorFlow学习笔记——(13)RNN、LSTM、GRU实现股票预测
文章目录一、RNN股票预测二、LSTM股票预测1、长短记忆网络介绍2、TF描述LSTM层3、实验代码三、GRU股票预测1、GRU网络介绍2、TF描述GRU层3、实验代码一、RNN股票预测import numpy as npimport tensorflow as tffrom tensorflow.keras.layers import Dropout, Dense, SimpleRNNimport matplotlib.pyplot as pltimport osimport pandas
2020-08-18 18:27:12 2942 11
原创 TensorFlow学习笔记——(12)Embedding编码方法
一、Embedding编码1、概念在前面的例子中,都采用了独热码的编码方式,独热码的位宽要与词汇量一致,如果词汇量增大时,非常浪费资源,因此自然语言处理中,有专门一个方向在研究单词的编码。2、TF描述词汇表大小:编码一共要表示多少个单词编码维度:用几个数字表示一个单词Embedding对于输入特征的维度也有要求:3、实例代码(1)一个字母预测import numpy as npimport tensorflow as tffrom tensorflow.keras.layers
2020-08-18 17:50:19 1958 1
原创 TensorFlow学习笔记——(11)循环神经网络
一、循环核首先回顾下卷积神经网络:卷积核:参数空间共享,卷积层提取空间信息。卷积神经网络:借助卷积核提取空间特征后,送入全连接网络。然后引入循环核:循环核:参数时间共享,循环曾提取时间信息。循环核具有记忆力,通过不同时刻的参数共享,实现了对时间序列的信息提取循环核表示为下面结构,中间圆柱是记忆体,可以设定记忆体的个数,改变记忆容量,当记忆体个数被指定时,输入xt、输出yt维度被指定,周围这些待训练参数(Why,Whh,Wxh)的维度也就被限定了。记忆体内存储着每个时刻的状态信息ht,
2020-08-18 09:16:00 1356 4
原创 TensorFlow学习笔记——(10)经典卷积网络
文章目录一、概述二、LeNet1、网络介绍2、完整代码三、AlexNet1、网络介绍2、主要代码四、VGGNet1、网络介绍2、主要代码五、InceptionNet1、网络介绍2、完整代码六、ResNet1、网络介绍2、完整代码七、总结一、概述二、LeNet1、网络介绍卷积神经网络的开篇之作,通过共享卷积核减少了网络的参数。在统计卷积网络层数时,一般只统计卷积计算层和全连接计算层,其余操作可以认为是卷积计算层的附属。LeNet一共有五层网络,网络结构如下:主要代码如下:2、完整代码
2020-08-16 16:39:58 879
原创 TensorFlow学习笔记——(9)卷积神经网络
文章目录一、概念二、卷积神经网络 网络的主要模块三、引入Cifar10数据集四、卷积神经网络搭建示例1、构思2、完整代码一、概念借助卷积核,对输入特征进行特征提取,再把提取到的特征送入全连接网络,进行识别预测。卷积就是特征提取器,就是CBAPD。C:卷积层B:BN层A:激活层P:池化层D:dropout层二、卷积神经网络 网络的主要模块三、引入Cifar10数据集导入Cifar10数据集:四、卷积神经网络搭建示例1、构思搭建一个1层卷积,2层全连接的网络。首先经过1层
2020-08-16 11:40:57 325
原创 TensorFlow学习笔记——(8)卷积神经网络的相关操作
文章目录一、感受野(Receptive Field)1、定义2、理解3、比较二、全零填充(padding)1、作用2、计算3、TF描述全零填充三、TF描述卷积层1、格式2、实例四、批标准化(Batch Normalization,BN)1、定义与作用2、TF描述批标准化3、实例五、池化(Pooling)1、定义和作用2、TF描述池化3、实例六、舍弃(Dropout)1、定义和作用2、TF描述舍弃3、实例一、感受野(Receptive Field)1、定义卷积神经网络各输出特征图中的每个像素点,在原始输
2020-08-14 18:25:02 235
原创 TensorFlow学习笔记——(7)卷积计算过程
全连接网络(NN)1、定义每个神经元与前后相邻层的每一个神经元都有连接关系,输入是特征,输出为预测的结果。2、参数个数计算如下3、例子第一层参数:784128个w+128个b第二层参数:12810个w+10个b共101770个待训练参数卷积计算过程1、引入背景实际项目中,图片多是高分辨率彩色图,因此待优化参数过多易导致模型过拟合。为了减少待训练参数,在实际应用时,会先对原始图像进行特征提取,再把提取到的特征送给全连接网络。卷积计算是一种有效的特征提取方法。2、计算过程(1)
2020-08-14 16:24:01 1570
原创 TensorFlow学习笔记——(6)神经网络八股功能扩展
一、自制数据集,解决本领域应用1、自制数据集当有本地数据集时,我们不能直接用load_data来加载数据,这时需要自己写函数去制作数据集。在电脑中有两个文件夹和两个txt文件,分别存放了训练集和测试集的图片和标签。其中,训练集有6万张图片,测试集1万张图片。标签文件mnist_train_jpg_xxxxx.txt 的结构是:value[0]用于索引到每张图片,也就是图片名字,value[1]是每张图片对应标签。用到的主要函数是generateds()# generateds()函数,用
2020-08-14 11:24:26 858
原创 TensorFlow学习笔记——(5)搭建网络八股
文章目录一、六步法搭建顺序神经网络1、步骤2、相关介绍(1)Sequential(2)compile(3)fit(4)summary二、六步法搭建非顺序神经网络1、步骤2、class MyModel(Model) model = MyModel定义方式tf.keras是Tensorflow的API(应用程序接口),可以快速搭建神经网络模型。一、六步法搭建顺序神经网络1、步骤import相关模块train,test:告知要喂入网络的训练集和测试集是什么,指定训练集的输入特征x_train和训练集的
2020-08-13 10:28:12 716
原创 TensorFlow学习笔记——(4)神经网络优化过程
预备知识目标:学会神经网络优化过程,使用正则化减少过拟合,使用优化器更新网络参数这里先介绍几个需要掌握的函数tf.where()条件语句为真返回A,假返回Btf.where(条件语句,真返回A,假返回B)例子np.random.RandomState.rand()返回一个[0,1]之间的随机数,若维度为空,则返回标量np.random.RandomState.rand(维度)例子np.vstack()将两个数组按垂直方向叠加np.vstack(数组1,数组2)例子
2020-08-12 23:06:43 911
原创 TensorFlow学习笔记——(3)TF2常用函数
常用函数1、强制tensor转化为该数据类型2、计算张量维度上元素的最小值3、计算张量维度上元素的最大值4、计算张量沿着指定维度的平均值5、计算张量沿着指定维度的和6、将变量标记为可训练7、对应元素的四则运算8、平方、次方和开方9、矩阵乘10、切分传入张量的第一维度11、实现某函数对指定参数的求导运算12、遍历每个元素13、独热编码(one-hot encoding)14、使n分类的n个输出符合概率分布15、参数自更新16、返回张量沿着指定维度最大值的索引号1、强制tensor转化为该数据类型tf.ca
2020-08-12 18:00:41 1177
原创 TensorFlow学习笔记——(2)张量
张量张量(Tensor)创建张量1、创建一个张量2、将numpy的数据类型转换成Tensor数据类型3、创建全为0的张量4、创建全为1的张量5、创建全为指定值的张量6、生成随机数张量(Tensor)张量是多维数组(列表),阶:张量的维数张量可以表示0阶到n阶数组(列表)创建张量1、创建一个张量tf.constant(张量内容,dtype=数据类型(可选))例子其中,shape表示张量的形状,逗号隔开几个数字就代表几阶张量(如下图隔开一个张量,就代表是一阶的,然后前面数字是2,表示有两个数
2020-08-12 17:14:41 390 1
原创 TensorFlow学习笔记——(1)神经网络设计过程
最近在学习TensorFlow搭建神经网络,记录下笔记呀~视频课程-B站-北京大学人工智能实践-TensorFlow2.0通过一个例子来认识神经网络的设计过程鸢尾花分类有三种鸢尾花:0狗尾草鸢尾,1杂色鸢尾,2弗吉尼亚鸢尾,当给一个新的图片是,怎么判断是哪类鸢尾呢?专家系统:把专家的经验告知计算机,计算机执行逻辑判别(理性计算),给出分类。比如这里可以用if语句case语句(花萼长>花萼宽且花瓣长/花瓣宽>2 则为1杂色鸢尾)神经网络:采集大量(花萼长、花萼宽、花瓣长、花瓣宽(输入特
2020-08-12 16:44:15 289
原创 基于Anaconda平台安装TensorFlow
经历了很多次的卸载安装,终于成功了…小白真的太不容易了!记录一下,下次就有经验了~主要步骤一、安装完成Python、PyCharm二、安装Anaconda三、安装TensorFlow四、在Jupyter中配置Tensorflow五、在Pycharm中配置Tensorflow一、安装完成Python、PyCharm这个就不多说了,找的B站的教程跟着来就OK啦~我安装的版本:Python 3.7.7PyCharm 2020.1.4 x64二、安装Anaconda经过多个版本的安装,最后选择了最新版
2020-07-24 18:19:58 455
原创 STM32学习笔记——(1)基础知识
参考文章https://blog.csdn.net/HLYL7923/article/details/80496148STM32 命名规则ROM / RAM / FLASH 区别1. ROM(Read Only Memory)只读存储器。特点:掉电不丢失数据,主要用来存储代码和常量等内容。2. RAM(Random Access Memory)随机存储器,可读可写。特点:掉电会丢失数据。RAM又分为SRAM(Static RAM)和DRAM(Dynamic RAM),SRAM是读写.
2020-07-18 17:00:15 315
原创 C#学习笔记——(30)halcon控件完整显示图片
上位机中halcon控件hWindowControl用于显示图像,但是有时会存在显示图像不完整的情况,解决如下:需要添加使图像完整显示的算子dev_set_part(0,0,Height-1,Width-1)。halcon中代码如下:dev_set_part(0,0,Height-1,Width-1)dev_display(img)dev_set_color ('blue')dev_display (SelectedRegions1)相应C#中代码如下://图片显示完整HOperator
2020-06-02 11:52:13 3437 2
原创 C#学习笔记——(29)海康威视工业相机C#例程问题汇总
参考文章或链接https://www.hikrobotics.com/service/soft.htm?type=1https://www.51halcon.com/thread-3999-1-1.htmlhttps://blog.csdn.net/kucoffee12/article/details/88884804关于using MvCamCtrl.NET在打开Sample文件夹...
2020-05-07 11:26:56 4154
原创 图像处理学习笔记(5)——图像光照不均的改善
gamma校正基于halconread_image (Image1, 'E:/Desktop/图片/1.bmp')gamma_image (Image1, GammaImage, 0.416667, 0.055, 0.0031308, 255, 'true')基于MATLABI=imread('原图.png');i= rgb2gray(I);J=imadjust(i,[],[],...
2020-04-18 16:34:13 4647
原创 上位机和下位机笔记总结
参考文章下位机程序架构总结:https://blog.csdn.net/m0_37961241/article/details/82764248上位机和下位机认识:https://wenku.baidu.com/view/c66ea3249ec3d5bbfc0a7448.html上位机和下位机概念上位机: 是指人可以直接发出操作命令的计算机,一般指PC、人机界面等。发出的命令首先给下位...
2020-04-08 16:37:00 3119
原创 C#学习笔记——(28)C#与halcon联合编程
参考文章https://blog.csdn.net/ruotianxia/article/details/81638552https://blog.csdn.net/daybreak___/article/details/82822090在图像处理方面,halcon比较方便,不需要自己写太多的代码,也有例程可以学习,所以就想要尝试一下将halcon的程序导出后用在基于C#的上位机中。软...
2020-04-01 17:14:45 1359
原创 图像处理学习笔记(4)——halcon例程surface_scratch.hdev
参考文章https://www.jianshu.com/p/b3d8d4a8bb07*关闭激活的图形显示窗口dev_close_window()*在程序运行过程中关闭(或开启)自动将图形输出对象输出到图形窗口dev_update_window('off')*---------------------------------------------------------------...
2020-03-28 15:50:51 543
原创 图像处理学习笔记(3)——图像分割
Ostu阈值分割算法思想计算直方图,将图像中所有的像素点按照0-255共256个bin,统计落在每个bin的像素点数量;对直方图进行归一化处理,即计算每个灰度级的像素数目占整幅图像的比例i表示分类的阈值,也即一个灰度级,从0开始迭代;通过归一化的直方图,统计0~i 灰度级的像素(假设像素值在此范围的像素叫做前景像素) 所占整幅图像的比例w1,并统计前景像素的平均灰度mu1;统计i~25...
2020-03-24 20:35:23 331
原创 图像处理学习笔记(2)——图像亮度调节
参考文章https://www.cnblogs.com/wjr408/p/6727118.htmlhttps://zhuanlan.zhihu.com/p/26074938https://blog.csdn.net/kenkao/article/details/3148091https://bbs.csdn.net/topics/30279382https://wenda.so.com...
2020-03-24 20:15:50 1086
原创 图像处理学习笔记(1)——图像滤波
图像滤波图像的频率代表了图像颜色变化的剧烈程度。低频分量:一幅图中,颜色变化缓慢的部分就叫做低频部分。通常低频是描述图像的主要部分。高频分量:一幅图中,颜色变化剧烈的部分就叫做高频部分。通常高频是描述图像的边缘、细节或者是噪声。均值滤波均值滤波是指任意一点的像素值,都是周围N×M个像素值的均值。例如下图中,红色点的像素值是其周围蓝色背景区域像素值之和除25,25=5×5 是蓝色区域的大小...
2020-03-24 20:15:27 1542
转载 工业相机(面阵和线阵)和镜头选型
版权声明:本文为CSDN博主「iflyme」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/iflyme/article/details/857757101.面阵相机和镜头选型已知:被检测物体大小为A×B,要求能够分辨率小于C,工作距离为D[1]相机选型步骤:(1). 相机的最低分辨率=(A×...
2020-03-09 15:32:20 3776
原创 C#学习笔记——(27)用户自定义控件创建使用
自定义控件/组件的方法1、在上一次的笔记中提到了自定义控件的方法,这种方法是自定义的Windows窗体控件库,最后在/Bin文件下生成的是.dll格式文件,将其拖到要使用项目的【工具箱】里就可以直接使用了。2、本次将记录另一种自定义控件的方法,是在自己写好代码后,编译整个项目,可以直接在工具栏中看到它,没有dll文件,不需要自己添加到工具箱。从使用上来看,第一种是专门写给别人用的又不想给别人...
2020-03-04 15:22:38 2364 1
转载 VS使用——解决vs2015调试X64工程时,提示:调试监视器(MSVSMON.EXE)未能启动
版权声明:本文为CSDN博主「野狼位位」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/u010565765/article/details/79149733在运行C#时有时会遇到下面的问题:通过尝试多种方法,终于可以解决,现将方法记录下来,方便以后使用。第一步:在菜单处右键单击,通过管理员权...
2020-02-22 12:21:18 579
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人