tensorflow量化感知训练_TensorFlow 模型建立与训练

这篇博客介绍了如何使用 TensorFlow 构建一个多层感知机 (MLP) 来完成 MNIST 数据集的手写数字分类任务。首先,通过 `tf.keras.datasets` 加载和预处理数据,然后利用 `tf.keras.Model` 和 `tf.keras.layers` 创建模型,接着设置损失函数和优化器进行训练,最后通过 `tf.keras.metrics` 评估模型性能,达到约 95% 的测试准确率。
摘要由CSDN通过智能技术生成

基础示例:多层感知机(MLP)

我们从编写一个最简单的 多层感知机 (Multilayer Perceptron, MLP),或者说 “多层全连接神经网络” 开始,介绍 TensorFlow 的模型编写方式。在这一部分,我们依次进行以下步骤:

使用 tf.keras.datasets 获得数据集并预处理

使用 tf.keras.Model 和 tf.keras.layers 构建模型

构建模型训练流程,使用 tf.keras.losses 计算损失函数,并使用 tf.keras.optimizer 优化模型

构建模型评估流程,使用 tf.keras.metrics 计算评估指标

基础知识和原理

这里,我们使用多层感知机完成 MNIST 手写体数字图片数据集 [LeCun1998] 的分类任务。

MNIST 手写体数字图片示例

数据获取及预处理: tf.keras.datasets

先进行预备工作,实现一个简单的 MNISTLoader 类来读取 MNIST 数据集数据。这里使用了 tf.keras.datasets 快速载入 MNIST 数据集。

classMNISTLoader():

def__init__(self):

mnist=tf.keras.datasets.mnist

(self.train_data,self.train_label),(self.test_data,self.test_label)=mnist.load_data()

# MNIST中的图像默认为uint8(0-255的数字)。以下代码将其归一化到0-1之间的浮点数,并在最后增加一维作为颜色通道

self.train_data=np.expand_dims(self.train_data.astype(np.float32)/255.0,axis=-1)# [60000, 28, 28, 1]

self.test_data=np.expand_dims(self.test_data.astype(np.float32)/255.0,axis=-1)# [10000, 28, 28, 1]

self.train_label=self.train_label.astype(np.int32)# [60000]

self.test_label=self.test_label.astype(np.int32)# [10000]

self.num_train_data,self.num_test_data=self.train_data.shape[0],self.test_data.shape[0]

defget_batch(self,batch_size):

# 从数据集中随机取出batch_size个元素并返回

index=np.random.randint(0,np.shape(self.train_data)[0],batch_size)

returnself.train_data[index,:],self.train_label[index]

提示

mnist = tf.keras.datasets.mnist 将从网络上自动下载 MNIST 数据集并加载。如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值