基础示例:多层感知机(MLP)
我们从编写一个最简单的 多层感知机 (Multilayer Perceptron, MLP),或者说 “多层全连接神经网络” 开始,介绍 TensorFlow 的模型编写方式。在这一部分,我们依次进行以下步骤:
使用 tf.keras.datasets 获得数据集并预处理
使用 tf.keras.Model 和 tf.keras.layers 构建模型
构建模型训练流程,使用 tf.keras.losses 计算损失函数,并使用 tf.keras.optimizer 优化模型
构建模型评估流程,使用 tf.keras.metrics 计算评估指标
基础知识和原理
这里,我们使用多层感知机完成 MNIST 手写体数字图片数据集 [LeCun1998] 的分类任务。
MNIST 手写体数字图片示例
数据获取及预处理: tf.keras.datasets
先进行预备工作,实现一个简单的 MNISTLoader 类来读取 MNIST 数据集数据。这里使用了 tf.keras.datasets 快速载入 MNIST 数据集。
classMNISTLoader():
def__init__(self):
mnist=tf.keras.datasets.mnist
(self.train_data,self.train_label),(self.test_data,self.test_label)=mnist.load_data()
# MNIST中的图像默认为uint8(0-255的数字)。以下代码将其归一化到0-1之间的浮点数,并在最后增加一维作为颜色通道
self.train_data=np.expand_dims(self.train_data.astype(np.float32)/255.0,axis=-1)# [60000, 28, 28, 1]
self.test_data=np.expand_dims(self.test_data.astype(np.float32)/255.0,axis=-1)# [10000, 28, 28, 1]
self.train_label=self.train_label.astype(np.int32)# [60000]
self.test_label=self.test_label.astype(np.int32)# [10000]
self.num_train_data,self.num_test_data=self.train_data.shape[0],self.test_data.shape[0]
defget_batch(self,batch_size):
# 从数据集中随机取出batch_size个元素并返回
index=np.random.randint(0,np.shape(self.train_data)[0],batch_size)
returnself.train_data[index,:],self.train_label[index]
提示
mnist = tf.keras.datasets.mnist 将从网络上自动下载 MNIST 数据集并加载。如