粒子群算法的pareto多目标函数优化matlab_进化算法(2)--多目标遗传算法

本文介绍了多目标遗传算法NSGA-II在解决多目标优化问题中的应用,强调了其优于传统非支配排序算法的低复杂度和精英保留策略。内容包括Pareto最优解的概念、Pareto等级划分以及NSGA-II的五个核心模块:种群初始化、快速非支配排序、拥挤度分配、锦标赛选择和精英保留策略。通过拥挤度算子,NSGA-II避免了共享参数的主观性,保证了种群的多样性。
摘要由CSDN通过智能技术生成

db066c5335c661323be37c311c7015ac.png

上一节我们介绍了单目标遗传算法,然而在解决实际的问题时,遇到的大部分问题都不止一个目标函数,这样的多目标问题需要用到多目标遗传算法来求解,本节主要介绍的多目标遗传算法是NSGA-II[1](改进的非支配排序算法),该遗传算法相比于其它的多目标遗传算法有如下优点:

  1. 传统的非支配排序算法的复杂度为
    ,而NSGA-II的复杂度为
    ,其中M为目标函数的个数,N为种群中的个体数。
  2. 引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度。
  3. 采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。(消除了共享参数)

基本概念

在介绍NSGA-II算法之前需要先介绍一些基本概念:

Pareto最优解、Pareto支配关系[2]

以最小化多目标优化问题为例,设有m个目标优化函数

,取任意两个决策变量

(1)如对于任意的多目标优化函数(

)都有:
则称
支配
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值