线性规划图解法求最优解_高中数学:简单的线性规划问题学习指导

本文介绍了如何使用图解法解决高中数学中的简单线性规划问题,为学习者提供了清晰的步骤和指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单的线性规划问题在现实的生产、生活中经常用到,如资源利用、人力调配、生产安排等,这方面的知识也越来越得到重视。 1. 简单线性规划问题的有关概念 先来看一道高考题(2006年山东卷): 某公司招收男职员x名,女职员y名,x和y须满足约束条件ae7fe441fb1d644890c14c67c95bff9a.png,则7054b3fd34e637a264a9e2c0bf0a2df8.png的最大值是(    ) A. 80  B. 85  C. 90   D. 95 (1)约束条件:变量x、y满足的一组条件,如上面高考题中的二元一次不等式组ae7fe441fb1d644890c14c67c95bff9a.png,就是对变量x、y的约束条件。 (2)线性约束条件:由变量x、y的一次不等式(或方程)组成的不等式组。如上面提到的二元一次不等式组中的约束条件都是关于x、y的一次不等式,所以又称为线性约束条件。 (3)目标函数:欲求最大值或最小值所涉及的变量x、y的解析式,如题中的7054b3fd34e637a264a9e2c0bf0a2df8.png。 (4)线性目标函数:目标函数关于两个变量x、y的一次解析式,对于目标函数7054b3fd34e637a264a9e2c0bf0a2df8.png,变量x、y的次数都是一次,称为线性目标函数。 (5)线性规划问题:在线性约速条件下求线性目标函数的最大值或最小值的问题。如试题中在线性约束条件ae7fe441fb1d644890c14c67c95bff9a.png下,求线性目标函数z=10x+10y的最大值问题就是线性规划问题。 (6)可行解:满足线性约束条件的解(x,y)。 (7)可行域:由所有可行解组成的集合,如图1所示,△ABC的区域就称为可行域。 6b2473f5cdfa586a8b8a49aafd7e538f.png 图1 (8)最优解:使目标函数取得最大值或最小值的可行解。   2. 线性规划问题的解题方法和步骤 解决简单线性规划问题的方法是图解法,即借助直线(线性目标函数看作斜率确定的一族平行直线)与平面区域(可行域)有交点时,直线在y轴上的截距的最大值或最小值求解,它的步骤如下: (1)设出未知数,确定目标函数。 (2)确定线性约束条件,并在直角坐标系中画出对应的平面区域,即可行域。 (3)由目标函数9a99024a3451083eddc06eb869a47f83.png变形为09ea555d57c8e68ae2f4db18a2fd4bcf.png,所以求z的最值可看成是求直线09ea555d57c8e68ae2f4db18a2fd4bcf.png在y轴上截距的最值(其中a、b是常数,z随x、y的变化而变化)。 (4)作平行线:将直线c828c5150adedbd5e23407cc740b2222.png平移(即作c828c5150adedbd5e23407cc740b2222.png的平行线),使直线与可行域有交点,且观察在可行域中使1c909723b1a29d39b8361f0ea10738ee.png最大(或最小)时所经过的点,求出该点的坐标。 (5)求出最优解:将(4)中求出的坐标代入目标函数,从而求出z的最大(小)值。   3. 特别关注 (1)可行域就是二元一次不等式组表示的平面区域,可行域可能是封闭的多边形,也可能是一侧开放的无限大的平面区域。 (2)有些问题要求出最优解的整数解才符合实际情况,当解方程得到的解不是整数解时,常用下面的一些方法求解: ①平移直线法:先在可行域中画网格,再描整点,平移直线c828c5150adedbd5e23407cc740b2222.png,最先经过或最后经过的整点坐标就是最优解。 ②检验优值法:当可行域中整点个数较少时,可将整点坐标逐一代入目标函数求值,经过比较得出最优解。 ③调整优值法:先求非整点的最优解,再借助于不定方程知识调整最优值,最后筛选出整点最优解。   4. 典题示例 例:某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损为30%和10%,投资人计划投资不超过10万元,要求确保可能的资金亏损不超过1.8万元。问投资人对甲、乙两个项目各投资多少万元,才可能使盈利最大? 解:设投资人分别将x万元,y万元投资于甲、乙两个项目。 由题意知b22a0a9b894157a5a91b4cea440af1f8.png,目标函数9263882a740c6bd72074f06866c2b6b9.png 上述不等式组表示的平面区域如图2所示,阴影部分(含边界)即为可行域。 8de17e3674ef10bda0b8510fffb792c9.png 图2 将9263882a740c6bd72074f06866c2b6b9.png变为9a611189962c38043c40d33a7166554f.png,则当直线9a611189962c38043c40d33a7166554f.png过点M时,在y轴上的截距最大,即z取得最大值。 解da1b9e6b343f22406128fba8de8c49c9.pngd73b29306c74d84f0606e32de097a976.png 此时e473a790d641a5a9c5525ba9375ca089.png 所以当x=4,y=6时,z取得最大值7。 故投资人用4万元资金投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使盈利最大。

10518d31b47b9d472ead3d7f0e3f5f86.png

免责声明:文章内容来源于:网络。以上图文,旨在分享,版权归原作者所有。如有侵权,请联系我们立刻删除

5f473b929c005ab3ac3b58c76206adc0.png

3444d34d45ce05b9b3c09e3c8eba4af6.png

d5da5101a644ec7b7a7c522392aa4a3d.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值