torch.narrow

  • 第一个参数是代表横轴删除还是纵轴删除,0为横轴,1为纵轴
  • 第二个和第三个参数代保留开始轴到结束轴的数字,类似于切片
x = torch.tensor([[1,2,3],[4,5,6],[7,8,9]])
x
tensor([[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]])

x.narrow(0,0,2)
tensor([[1, 2, 3],
        [4, 5, 6]])

x.narrow(1,1,2)
tensor([[2, 3],
        [5, 6],
        [8, 9]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值