在“用户画像—打用户行为标签”中,主要讲了如何对用户的每一次操作行为、业务行为进行记录打上相应的标签。在这篇博客中,主要讲如何对这些明细标签进行计算以及偏好的产品、内容的类目。
关于用户标签权重的计算,在这篇博客里面讲过了:
超人:用户画像之标签权重算法zhuanlan.zhihu.com
这里再详细介绍一下:
用户标签权重 = 行为类型权重 × 时间衰减 × 用户行为次数 × TF-IDF计算标签权重
公式中各参数的释义如下:
- 行为类型权重:用户浏览、搜索、收藏、下单、购买等不同行为对用户而言有着不同的重要性,一般而言操作复杂度越高的行为权重越大。该权重值一般由运营人员或数据分析人员主观给出;
- 时间衰减:用户某些行为受时间影响不断减弱,行为时间距现在越远,该行为对用户当前来说的意义越小;
- 行为次数:用户标签权重按天统计,用户某天与该标签产生的行为次数越多,该标签对用户的影响越大;
- TF-

本文探讨如何计算用户行为标签的权重,并在用户行为标签基础上生成用户偏好标签。通过用户行为类型权重、时间衰减、行为次数和TF-IDF计算,形成用户标签权重表,进一步对同类标签权重汇总,从而确定用户的偏好标签。
最低0.47元/天 解锁文章
1530

被折叠的 条评论
为什么被折叠?



