不动点求数列通项原理_【不动点为什么能用来解数列通项不动点原理,为什么能用来解数列通项,请推导一下,(现在只在高中)】作业帮...

如果只是高中范围内的话,不好深入说明其中原理,只能证明这是对的

递推式:

a(n+1)=(A*an+B)/(C*an+D)

(n∈N*,A,B,C,D为常数,C不为0,AD-BC不为0,a1与a2不等)

其特征方程为x=(A*x+B)/(C*x+D)

特征方程的根称为该数列的不动点

这类递推式可转化为等差数列或等比数列

1)若x=(A*x+B)/(C*x+B)有两个不等的根α、β,则有:

(a(n+1)-α)/(a(n+1)-β)=k*((an-α)/(an-β))

其中k=(A-α*C)/(A-β*C)

x=(A*x+B)/(C*x+D)

C*x^2+(D-A)*x-B=0

α不等于β

(D-A)^2+4*B*C不等于0

C*α^2+(D-A)*α-B=0

C*α^2-A*α=B-α*D

a(n+1)-α=(A*an+B-C*α*an-α*D)/(C*an+D)=(A*an-C*α*an+C*α^2-A*α)/(C*an+D)=(A-C*α)*(an-α)/(C*an+D)

a(n+1)-β=(A*an+B-C*β*an-β*D)/(C*an+D)=(A*an-C*β*an+C*β^2-A*β)/(C*an+D)=(A-C*β)*(an-β)/(C*an+D)

(a(n+1)-α)/(a(n+1)-β)=(A-α*C)/(A-β*C)*((an-α)/(an-β))

(an-α)/(an-β)=((A-α*C)/(A-β*C))^(n-1)*((a1-α)/(a1-β))

an=(β*(((A-α*C)/(A-β*C))^(n-1))*((a1-α)/(a1-β))-α)/(((((A-α*C)/(A-β*C))^(n-1))*((a1-α)/(a1-β))-1)

2)若x=(A*x+B)/(C*x+B)有重根α,则有

1/(a(n+1)-α)=1/(an-α)+k

其中k=(2*C)/(A+D)

x=(A*x+B)/(C*x+D)

C*x^2+(D-A)*x-B=0

C*α^2+(D-A)*α-B=0

α=(A-D)/(2*C)

a(n+1)-α=(A-C*α)*(an-α)/(C*an+D)

1/(a(n+1)-α)=((C*an+D)/(A-C*α))*(1/(an-α))

=1/(an-α)+(C*an+D-A+((A-D)/(2*C))*C)/((A-(A-D)/(2*C)*C)*(an-(A-D)/(2*C)))=1/(an-α)+(C*an+C*(D-A)/(2*C))/(((A+D)/2)*(an+(D-A)/(2*C)))

=1/(an-α)+(2*C)/(A+D)

1/(an-α)=(2*C*(n-1))/(A+D)+1/(a1-α)

an=1/((2*C*(n-1))/(A+D)+1/(a1-α))+α

类似的

递推式:

a(n+1)=(an^2+P)/(2*an+Q)

(n∈N*,P,Q为常数)

其特征方程为x=(x^2+P)/(2*x+Q)

1)若其有两个不等根α、β,即Q^2+4*P不等于0

则有:

(a(n+1)-α)/(a(n+1)-β)=((an-α)/(an-β))^2

令xn=ln((an-α)/(an-β))

则有:x(n+1)=2*xn

转化为了等比数列.

ln((a(n+1)-α)/(a(n+1)-β))=2*ln((an-α)/(an-β))

an=(β*((a1-α)/(a1-β))^(2^(n-1))-α)/(((a1-α)/(a1-β))^(2^(n-1))-1)

2)若其有重根α,即Q^2+4*P=0

则有:

an=(a1-α)/(2^(n-1))+α

作业帮用户

2017-10-14

举报

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值