python123分式求和_分式型函数 - osc_z7puwmqc的个人空间 - OSCHINA - 中文开源技术交流社区...

前言

分式型函数是高中数学中非常常见的一类函数,常常和三角函数,齐次函数,二次函数,对勾函数,幂函数等纠缠融合在一起,在判断函数的单调性和值域(或最值)时经常出现,比较特殊,学生感觉难以掌握,现对其作以归纳总结。

变形汇总

代数换元法,配凑法,分式裂项法,同除构造法,数形结合法,

常用变形

案例研究函数$f(x)=\frac{x^2}{3-x}$的图像或者单调性

常常需要将函数做以下变形[由于常用,提醒注意理解记忆]

①[配凑法]变形,$\cfrac{x^2}{3-x}=-\cfrac{x^2}{x-3}=-\cfrac{(x-3)^2+6x-9}{x-3}$$=-(x-3)-\cfrac{6x-18+9}{x-3}=-(x-3)-\cfrac{9}{x-3}-6$$=-[(x-3)+\cfrac{9}{x-3}]-6$;

其图像可以借助$f(x)=x+\cfrac{9}{x}$的图像变换得到,借助图像就可以研究其所有性质了;

②[换元法]变形,令$3-x=t$,则$x=3-t$,则$f(x)=\cfrac{x^2}{3-x}=\cfrac{(3-t)^2}{t}$$=\cfrac{t^2-6t+9}{t}=t+\cfrac{9}{t}-6=(3-x)+\cfrac{9}{3-x}-6$$=-[(x-3)+\cfrac{9}{x-3}]-6$;

③也可以使用导数法研究,但是和上述方法[其优越性在于能用上我们积累的常用的模板函数的性质]相比,感觉繁琐,

多项式型

①分子分母一次型,如$f(x)=\cfrac{x+2}{x+1}$;

注意对称性:如$f(x)=\cfrac{1-x}{1+x}$,对称中心为$(-1,-1)$,

注意奇偶性的判断,由于$g(-x)=lg\cfrac{1+x}{1-x}=lg(\cfrac{1-x}{1+x})^{-1}=-lg\cfrac{1-x}{1+x}=-g(x)$,故$g(x)=lg\cfrac{1-x}{1+x}$就是奇函数。

注意单调性,常用配凑法+分离常数法,或配凑法+分式裂项法,

注意值域;如$f(x)=\cfrac{x+2}{x+1}=1+\cfrac{1}{x+1}$;

换元可以转化为上述形式的,如$f(x)=\cfrac{2^x-1}{2^x+1}$,

分子分母二次型,如$f(x)=\cfrac{x^2+2x-3}{x^2+x+1}$求值域;判别式法;

②分子二次分母一次型,如$h(x)=\cfrac{x^2-4x+5}{x-2}$,

常用配凑法+分离常数法,或配凑法+分式裂项法,或换元法,

如[配凑法]$h(x)=\cfrac{x^2-4x+5}{x-2}=\cfrac{(x-2)^2+1}{x-2}=(x-2)+\cfrac{1}{x-2}$,

或[换元法]令$x-2=t$,则$x=t+2$,

故$h(x)=\cfrac{(t+2)^2-4(t+2)+5}{t}=\cfrac{t^2+1}{t}=t+\cfrac{1}{t}$

即$h(x)=t+\cfrac{1}{t}=(x-2)+\cfrac{1}{x-2}$

$f(x)=\cfrac{9^x+1}{3^x}$,

③分子一次分母二次型,如$n(x)=\cfrac{x+1}{x^2+3x+3}$;

常用取倒数法,或换元法,或配凑同除法

如$n(x)=\cfrac{x+1}{x^2+3x+3}$;则$n(x)=\cfrac{x+1}{(x+1)^2+(x+1)+1}=\cfrac{1}{(x+1)+\cfrac{1}{x+1}+1}$

如$g(t)=\cfrac{t}{t^2+9}=\cfrac{1}{t+\frac{9}{t}}$;如$h(t)=\cfrac{t+2}{t^2}=\cfrac{1}{t}+2(\cfrac{1}{t})^2=2m^2+m$;

三角齐次型

④分子分母是一次齐次式,$f(x)=\cfrac{cosx+2sinx}{sinx-2cosx}$;

针对④型的,常用分子分母同除以$cosx$法,

⑤分子分母是二次齐次式,$h(\theta)=\cfrac{2sin^2\theta+cos^2\theta}{sin^2\theta-3cos^2\theta}$

针对⑤型的,常用分子分母同除以$cos^2\theta$法,

⑥分母为$1$ 的二次齐次式,$g(\theta)=cos2\theta=\cfrac{cos2\theta}{1}=\cfrac{cos^2\theta-sin^2\theta}{sin^2\theta+cos^2\theta}$

针对⑥型的,转化为⑤型的再处理;

均值不等式型

⑦分母之和为定值的类型,$f(x)=\cfrac{1}{x}+\cfrac{4}{2-x}(0

针对⑦型的,转化为利用均值不等式处理;

当$x>\cfrac{1}{2}$时,求$f(x)=x+\cfrac{8}{2x-1}$的最小值。

⑧可以转化为上述分式型的,

引例如求函数$y=\cfrac{sin\alpha\cdot cos\alpha}{sin\alpha+cos\alpha},\alpha\in [0,\cfrac{\pi}{2}]$的值域问题。

分析:利用换元转化为分式型处理;

令$sin\alpha+cos\alpha=t=\sqrt{2}sin(\alpha+\cfrac{\pi}{4})\in [1,\sqrt{2}]$,

则$sin\alpha\cdot cos\alpha=\cfrac{t^2-1}{2}$,

则原函数转化为$y=\cfrac{\frac{1}{2}(t^2-1)}{t}=\cfrac{1}{2}(t-\cfrac{1}{t}),t\in [1,\sqrt{2}]$

引例求函数$y=\cfrac{sin\alpha+cos\alpha}{sin\alpha\cdot cos\alpha},\alpha\in [0,\cfrac{\pi}{2}]$的值域问题。

分析:利用换元转化为分式型处理;

令$sin\alpha+cos\alpha=t=\sqrt{2}sin(\alpha+\cfrac{\pi}{4})\in [1,\sqrt{2}]$,

则$sin\alpha\cdot cos\alpha=\cfrac{t^2-1}{2}$,

则原函数转化为$y=\cfrac{2}{t-\frac{1}{t}},t\in [1,\sqrt{2}]$

引例求函数$y=\cfrac{sin\alpha-cos\alpha}{sin\alpha\cdot cos\alpha},\alpha\in [\cfrac{\pi}{2},\cfrac{3\pi}{4}]$的值域问题。

分析:利用换元转化为分式型处理;

令$sin\alpha-cos\alpha=t=\sqrt{2}sin(\alpha-\cfrac{\pi}{4})\in [1,\sqrt{2}]$,

则$sin\alpha\cdot cos\alpha=\cfrac{1-t^2}{2}$,

则原函数转化为$y=\cfrac{2}{\frac{1}{t}-t},t\in [1,\sqrt{2}]$

二元函数型

⑨线性规划型,如求$\cfrac{3x+4y+10}{x+3}$的取值范围。

化为部分分式的形式,转化为斜率型,由数转化为形。

如求$\cfrac{3x+4y+10}{x+2}=\cfrac{(3x+6)+4y+4}{x+2}=3+4\times \cfrac{y+1}{x+2}=3+4\times \cfrac{y-(-1)}{x-(-2)}$的取值范围。

⑩线性规划型,如$z=\cfrac{x^2+y^2}{xy}=\cfrac{x}{y}+\cfrac{y}{x}=k+\cfrac{1}{k}$;

⑪函数与导数中的导函数如$f'(x)=\cfrac{(x-2)(x+1)}{x}$;$f'(x)=\cfrac{e^x(x-1)(x+m)}{x^2}$等;

补充,函数$f(x)=\sqrt{x+1}-\sqrt{x}=\cfrac{1}{\sqrt{x+1}+\sqrt{x}}$,函数单调递减;

⑫碰到$d=\cfrac{|k+1|}{\sqrt{k^2+1}}$时,可以考虑先平方得到,$d^2=\cfrac{(k+1)^2}{k^2+1}=1+\cfrac{2k}{k^2+1}\leq 1+1=2$,再考虑求解$d$;

⑬$|OP|^2=\cfrac{(m^2+1)(m^2+16)}{(m^2+4)^2}$,令$m^2+4=\lambda>4$,则$|OP|^2=\cfrac{(\lambda-3)(\lambda+12)}{\lambda^2}=-\cfrac{36}{\lambda^2}+\cfrac{9}{\lambda}+1$

$=-36(\cfrac{1}{\lambda}-\cfrac{1}{8})^2+\cfrac{25}{16}\leq \cfrac{25}{16}$.

隐含性质

①如$f(x)=\cfrac{x+2}{x+1}=1+\cfrac{1}{x+1}$,则可知其对称中心为$(-1,1)$,

则其必然满足关系:$f(x)+f(-x-2)=2$或者$f(-x)+f(x-2)=2$。

如若不信,你可以验证,$f(-x)=\cfrac{-x+2}{-x+1}=\cfrac{x-2}{x-1}$;$f(x-2)=\cfrac{x-2+2}{x-2+1}=\cfrac{x}{x-1}$,

则$f(-x)+f(x-2)=\cfrac{x-2+x}{x-1}=\cfrac{2(x-1)}{x-1}=2$;

其实,表达式$f(-x)+f(x-2)=2$就是刻画函数的对称性的。

②同理同法,我们可知函数$h(x)=\cfrac{x^2-4x+5}{x-2}=\cfrac{(x-2)^2+1}{x-2}=(x-2)+\cfrac{1}{x-2}$,

是中心对称的,其对称中心为$(2,0)$。也就是说,其必然满足$f(x)+f(4-x)=0$。

典例剖析

例1求函数$f(x)=\cfrac{2+x}{1+x}$的值域。

分析:函数$f(x)=\cfrac{2+x}{1+x}=1+\cfrac{1}{1+x}$,由于$\cfrac{1}{1+x}\neq 0$,则函数$f(x)\neq 1$,故值域为$(-\infty,1)\cup (1,+\infty)$。

例2【利用对称性求值】若$f(x)=\cfrac{3x-2}{2x-1}$,则$f(\cfrac{1}{11})+f(\cfrac{2}{11})+f(\cfrac{3}{11})+\cdots+f(\cfrac{10}{11})$的值是多少?

法1:结合要求解的条件,我们尝试求解$f(x)+f(1-x)$的值,结果会发现:$f(x)+f(1-x)=3$,

故有$f(\cfrac{1}{11})+f(\cfrac{10}{11})=3$;$f(\cfrac{2}{11})+f(\cfrac{9}{11})=3$;等等,

所以$f(\cfrac{1}{11})+f(\cfrac{2}{11})+f(\cfrac{3}{11})+\cdots+f(\cfrac{10}{11})$

$=5[f(\cfrac{1}{11})+f(\cfrac{10}{11})]=5\times 3=15$.

法2:将函数$f(x)$化为部分分式为$f(x)=\cfrac{3}{2}-\cfrac{1}{2(2x-1)}$,

故函数$f(x)$的对称中心是$(\cfrac{1}{2},\cfrac{3}{2})$,

故根据函数的对称性的数学表达可以写出$f(x)+f(1-x)=3$;

故所求式等于$5\times 3=15$.

法3:本题目也可以说明倒序相加求和法。

例14【2019天津滨海新区七所重点学校联考】若正实数$x$,$y$满足$x+2y=5$,则$\cfrac{x^2-3}{x+1}+\cfrac{2y^2-1}{y}$的最大值为_____________。

分析:由题可知,$x>0$,$y>0$,又由于$x+2y=5$,则$(x+1)+2y=6$,

$\cfrac{x^2-3}{x+1}+\cfrac{2y^2-1}{y}=\cfrac{(x+1)^2-2(x+1)-2}{x+1}+2y-\cfrac{1}{y}$

$=x+1-2+2y-(\cfrac{2}{x+1}+\cfrac{1}{y})$

$=x+2y-1-(\cfrac{2}{x+1}+\cfrac{1}{y})$

$=4-(\cfrac{2}{x+1}+\cfrac{1}{y})$

$=4-\cfrac{1}{6}(\cfrac{2}{x+1}+\cfrac{1}{y})\times [(x+1)+y]$

$=4-\cfrac{1}{6}(2+2+\cfrac{4y}{x+1}+\cfrac{x+1}{y})$

$\leqslant 4-\cfrac{1}{6}(4+2\sqrt{4})=\cfrac{8}{3}$,

当且仅当$x+2y=5$,$x+1=2y$,即$x=2$,$y=\cfrac{3}{2}$时取到等号;

则$\cfrac{x^2-3}{x+1}+\cfrac{2y^2-1}{y}$的最大值为$\cfrac{8}{3}$.

解后反思:本题目用到分式变形,拆添项,常数代换,乘常数除常数等多种变形技巧。

例1方程$2log_2x-log_2(x-1)=m+1$有两个不同的解,求参数$m$的取值范围;

分析:先求解定义域,为$x>1$,再将原方程变形为$log_2\cfrac{x^2}{x-1}=m+1$,即函数$y=log_2\cfrac{x^2}{x-1}$与函数$y=m+1$的图像应该有两个交点,

重点研究函数$y=log_2\cfrac{x^2}{x-1}$的性质,令$x-1=t>0$,则$\cfrac{x^2}{x-1}=\cfrac{(t+1)^2}{t}=t+\cfrac{1}{t}+2$,对勾型函数

故函数$y=log_2\cfrac{x^2}{x-1}=log_2(t+\cfrac{1}{t}+2)$,故复合函数当$t\in (0,1]$上单调递减,当$t\in[1,+\infty)$上单调递增,

在同一个坐标系中做出两个函数的图像,由图可知,两个函数图像要有两个交点,则$m>1$.

例5【2019蚌埠模拟】已知$a>0$,设函数$f(x)=\cfrac{2018^{x+1}+2016}{2018^x+1}$$(x\in [-a,a])$的最大值为$M$,最小值为$N$,那么$M+N$=【】

$A.2016$ $B.2018$ $C.4032$ $D.4034$

分析:$f(x)=\cfrac{2018^{x+1}+2016}{2018^x+1}=\cfrac{2018^x\cdot 2018+2016}{2018^x+1}=\cfrac{2018(2018^x+1)+2}{2018^x+1}=2018-\cfrac{2}{2018^x+1}$

故函数$f(x)$在区间$[-a,a]$上单调递增,故$M=f(x){max}=f(a)$,$N=f(x){min}=f(-a)$,

故$M+N=f(a)+f(-a)=2018-\cfrac{2}{2018^a+1}+2018-\cfrac{2}{2018^{-a}+1}=4036-2=4034$,故选$D$.

例6已知$a_n=\cfrac{n-4}{n-\frac{9}{2}}$,求数列${a_n}$的最小项和最大项;

分析:我们依托数列所对应的函数$f(x)=\cfrac{x-4}{x-\frac{9}{2}}=\cfrac{2x-8}{2x-9}=\cfrac{2x-9+1}{2x-9}=1+\cfrac{1}{2x-9}$

做出其图像,其对称中心为点$(4.5,1)$,

由图可知,当$n\leqslant 4$时,数列${a_n}$单调递减,且有$1>a_1>a_2>a_3>a_4$;

当$n\geqslant 5$时,数列${a_n}$单调递减,且有$a_5>a_6>a_7>\cdots > 1$;

故数列${a_n}$的最小项为$a_4$,最大项为$a_5$;

高考相关

例1【2019年高考数学试卷理科新课标Ⅱ第21题】部分解答过程集锦

$S_{\triangle PQG}=\cfrac{8(y_0x_0^3+x_0y_0^3)}{2x_0^4+2y_0^4+5x_0^2y_0^2}$ $\xlongequal[化简整理得到]{给分子分母同除以x_0^2y_0^2}$ $\cfrac{8(\frac{x_0}{y_0}+\frac{y_0}{x_0})}{2(\frac{x_0}{y_0}+\frac{y_0}{x_0})^2+1}$

令$t=\frac{x_0}{y_0}+\frac{y_0}{x_0}$,则$t\geqslant 2$,

则$S_{\triangle PQG}=\cfrac{8t}{2t^2+1}=\cfrac{8}{2t+\frac{1}{t}}$

利用对勾函数$f(t)=2t+\cfrac{1}{t}$在$[2,+\infty)$上的单调性可知,

$f(t)\geqslant 4+\cfrac{1}{2}=\cfrac{9}{2}$(当$t=2$时取到等号)

所以$S_{\triangle PQG}\leqslant \cfrac{8}{\frac{9}{2}}=\cfrac{16}{9}$

方程消参

1、已知参数方程为$\left{\begin{array}{l}{x=p(k^2+\cfrac{1}{k^2})}\{y=p(k-\cfrac{1}{k})}\end{array}\right.$,则其普通方程是什么。

2、已知参数方程$\left{\begin{array}{l}{x=\frac{3}{1+k^2}①}\{y=\frac{3k}{1+k^2}②}\end{array}\right.(|k|< \frac{2\sqrt{5}}{5})$,消参求其普通方程;

3、已知参数方程$\left{\begin{array}{l}{x=\frac{1-t^2}{1+t^2}①}\{y=\frac{4t}{1+t^2}②}\end{array}\right.(t为参数)$,消参求其普通方程;

补遗

对函数$f(x)=\cfrac{4x}{x^2+2}$的变形思考:

思路1:当$x\neq 0$时,常用变形$f(x)=\cfrac{4x}{x^2+2}=\cfrac{4}{x+\frac{2}{x}}$,当仅仅$x>0$时,或者$x<0$时也可以用均值不等式求最值;

思路2:用导数判断其单调性,

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值