python运输问题_Pyomo使用简介(二):运输问题

本文介绍了如何使用Pyomo解决运输问题,包括数学模型的构建、数据文件的编写。文章通过一个简单的运输问题实例,阐述了目标函数、供应与需求约束,并展示了数据集的设定,涉及集合定义、参数赋值等步骤。
摘要由CSDN通过智能技术生成

上次讲到了基础的求最优化问题,这次将会主要主要涉及到运输问题。

在Pyomo的使用过程中,模型分为Concrete和Abstract模型。

不论是什么模型,在建模的构建中,一些Model Components是必不可少的。

这些Components的定义方式会在之后有所涉及,其实在一些例题的学习过程中,也可以加深对于这些东西的理解。

今天的内容是关于运输问题。运输问题是一类经典运筹学中涉及到的问题,其包括:

一般运输问题,又称希契科克运输问题,简称H问题。

网络运输问题,又称图上运输问题,简称T问题。

最大流量问题,简称F问题。

最短路径问题,简称S问题。

任务分配问题,又称指派问题,简称A问题。

生产计划问题,又称日程计划问题,简称CPS问题。

运输问题的典型情况是研究单一品种物质的运输调度问题:设某种物品有m个产地A1,A2,···,Am,各产地的产量分别是a1,a2,···,am;有n个销地B1,B2,···,Bn,各个销地的销量分别为b1,b2,···,bn。假定从产地Ai(i=1,2,···,m)向销地Bj(j=1,2,···,n)运输单位物品的运价为cij,问怎么调运这些物品才能使总运费最小?

这里,我们有如下简例:运输问题表格

每行最后的Supply(5 7 3)代表供应商S1 S2 S3 最多能提供的数量上限,每列最后的Demand(7 3 5)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值