knn matting matlab,一键抠图,毛发毕现:这个GitHub项目助你快速PS

PyMatting是一个Python库,专注于阿尔法抠图和前景预测,提供多种算法如Closed-Form、KNN等,支持GPU加速。通过划定图像区域,AI能准确提取前景并用于背景替换,适用于图像编辑和合成。项目包含快速多线程KNN搜索、阈值化等技术,并提供测试代码和基准测试结果,方便用户评估和使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器之心报道

参与:一鸣

快速抠图不留痕,设计看了都精神。

抠图是 PS 中的一项常用技术。但是要做到完美地将图像中的目标选取出来往往费时费力。近日,一个名为 PyMatting 的项目无疑能够帮助你。

项目地址:https://github.com/pymatting/pymatting

无需手动,一键抠图

抠图的 AI 应用场景是这样的:给定一张图像,通过划定一个区域,AI 应当能够估计到划定区域内的前景图目标,并将这个前景完整地抽取出来,用来替换到其他背景的图像中去。

因此,抠图需要两个 AI 能力:首先,AI 需要能够在划定的区域内识别目标。其次,AI 要能够完整地将目标抽取出来,没有划定错误的边缘、模糊的图像等问题。

b89b40cb51dc393fed5c4c93c8e36a01.png

上图为项目作者提供的示例。给定一只动物的图像(左上),以及人划定的区域(右上),算法应当能够获得划定区域内目标的阿尔法通道,即区分前景和背景的黑白轮廓(左下)。有了这一数据,就可以从原图中抠去目标,并移动到新的图像中去(右下)。

据项目介绍,PyMatting 具有以下特性。

首先,项目能够完成阿尔法抠图(Alpha Matting),其中包括 Closed-Form 抠图、大核抠图(Large Kernel Matting)、KNN 抠图、基于学习的数字抠图(Learning Based Digital Matting)、随机游走(Random Walk)抠图等算法。

同时,项目也能完成前景预估,包括 Clos Form 前景预估和多级别前景预估(基于 CPU、CUDA 和 OpenCL 等)算法。

该项目还可以进行快速多线程 KNN 搜索、不完全阈值化楚列斯基分解(incomplete thresholded Cholesky decomposition)、V 轮几何多网格预条件子(V-Cycle Geometric Multigrid preconditioner)等。

使用方法

在使用前,你需要保证电脑安装相应的 Python 环境(Python 3),同时需要以下安装包:

numpy>=1.16.0pillow>=5.2.0numba>=0.47.0scipy>=1.1.0由于项目需要 GPU,因此也需要 GPU 相关支持:

cupy-cuda90>=6.5.0 or similarpyopencl>=2019.1.2除此之外,为了进行测试,也需要:

pytest>=5.3.4为了方便使用,作者提供了一些示例代码。例如,如下代码中,给定原始图像和抠图框,可以抽取出阿尔法前景:

frompymattingimportcutoutcutout(#inputimagepath"data/lemur.png",#inputtrimappath"data/lemur_trimap.png",#outputcutoutpath"lemur_cutout.png")

作者还提供了高级代码,直接进行抠图,生成新图像:

image=load_image("../data/lemur/lemur.png","RGB",scale,"box")trimap=load_image("../data/lemur/lemur_trimap.png","GRAY",scale,"nearest")#estimatealphafromimageandtrimapalpha=estimate_alpha_cf(image,trimap)#makegraybackgroundnew_background=np.zeros(image.shape)new_background[:,:]=[0.5,0.5,0.5]#estimateforegroundfromimageandalphaforeground,background=estimate_foreground_ml(image,alpha,return_background=True)#blendforegroundwithbackgroundandalpha,lesscolorbleedingnew_image=blend(foreground,new_background,alpha)

除了代码示例外,项目还提供了测试代码,可在主目录中运行:

python3tests/download_images.pypip3install-rrequirements_tests.txtpytest

这一测试能够覆盖 89% 的代码。

除了项目外,作者还提供了不同的抠图算法的基准测试结果,如下所示:

708c51ff729fffc0dda907fcdd8f5da4.png

不同算法在测试数据集上的均方误差大小。

可以看出,基于学习的算法和 Closed-Form 算法都能取得不错的效果。

完整的基准测试结果:https://pymatting.github.io/benchmark.html

### 回答1: KNN(K最近邻算法)是一种常用的分类算法,可以应用于图像处理中的抠图操作。在MATLAB中实现KNN算法进行图像抠图,需要按照以下步骤进行: 1. 获取待抠图的图像,并将其转换为合适的数据格式。可以使用MATLAB中的imread函数读取图像,并将其转为灰度图像以简化处理。 2. 对图像进行预处理,例如去噪和平滑等操作。可以通过应用滤波器(如高斯滤波器)对图像进行平滑处理,消除一些噪声影响。 3. 对每个像素进行特征提取,以构建特征向量。可以选择使用像素的颜色值和位置等特征作为输入特征。 4. 将数据集分为训练集和测试集。将一部分图像作为训练集,剩余的图像作为测试集用于验证算法的准确性。 5. 对每个测试像素,计算其与训练集中各像素的距离,可选择欧式距离或曼哈顿距离等作为距离度量。 6. 选取K个最近邻,根据它们的类别(即训练集中所属的像素类别),确定测试像素的类别。可以通过计算最频繁的类别来确定。 7. 将测试像素与训练集中的像素重新组合,即将其分类为前景或背景像素。 8. 重复以上步骤,直到对所有测试像素进行分类。 9. 最后通过图像的重建操作,将抠图后的结果输出。可以创建一个与原始图像大小相同的新图像,并将抠图后的像素重新填充到对应的位置。 通过以上步骤,就可以在MATLAB中实现KNN算法进行图像抠图操作。需要注意的是,KNN算法的性能很大程度上取决于特征的选择和距离度量的方法,因此在具体应用中需根据实际情况进行调整和优化。 ### 回答2: Matlab可以使用KNN算法来实现图像的抠图。首先,我们需要加载图像,并将其转换为特征向量表示。常用的图像特征表示方法有颜色直方图、纹理特征和形状特征等。 接下来,我们需要加载训练集和测试集的图像,并提取其特征向量表示。然后,我们使用KNN算法来找到与测试图像最相似的训练图像。 首先,我们计算测试图像与所有训练图像之间的距离。常用的距离度量方法包括欧氏距离、曼哈顿距离和余弦相似度等。我们选择适合我们问题的距离度量方法。 然后,我们根据距离的大小将训练图像进行排序。选择K个距离最近的训练图像作为测试图像的最邻近邻居。通常情况下,K的取值是一个较小的正整数。 最后,我们将测试图像与K个最邻近的训练图像进行比较,并根据它们的标签来确定测试图像的类别。可以使用多数表决的方法来决定测试图像的类别。即,选择K个最邻近的训练图像中出现次数最多的标签作为测试图像的类别。 通过这样的方法,我们可以实现KNN算法进行图像的抠图。根据测试图像的特征向量和K个最邻近的训练图像的标签,我们可以获得测试图像的抠图结果。 需要注意的是,KNN算法有其局限性。在应用KNN算法进行图像抠图时,我们需要选择合适的特征表示方法和距离度量方法,以及合适的K值。此外,KNN算法对特征表示的质量和样本分布的均匀性也很敏感。因此,在实际应用中,我们可能需要对图像进行预处理和优化,以提高抠图的准确性和效果。 ### 回答3: k近邻算法(k-nearest neighbors,简称knn)是一种常用的分类算法,可以用于图像抠图。下面将简要介绍如何使用MATLAB实现knn图像抠图。 1. 首先,将需要抠图的图像导入MATLAB的工作环境中。可以使用imread函数读取图像,将其转换为RGB格式。例如:image = imread('image.jpg'); 2. 将图像进行预处理,包括去噪、灰度化和归一化等操作,以便提高knn算法的准确性。 3. 根据需要抠图的区域,选择一系列样本点作为训练集。可以手动选择样本点,也可以通过自动划定区域选择样本点。 4. 使用knn算法对图像进行分类。将图像中的每个像素点作为测试样本,计算其与训练集中各样本点的欧几里得距离,选择距离最近的k个样本点。根据这k个样本点的类别,决定该像素点的类别。 5. 根据分类结果,将目标区域从原图像中分割出来,形成抠图效果。可以使用imwrite函数将分割结果保存为新的图像文件。例如:imwrite(result,'result.png'); 值得注意的是,knn图像抠图算法可能受到一些因素的影响,如训练集样本点的选择、k值的确定等。因此,建议根据具体情况进行调整和优化,以获得更好的抠图效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值