展开全部
超调量也叫最大偏差或过冲62616964757a686964616fe59b9ee7ad9431333431376565量,偏差是指被调参数与给定值的差。
对于稳定的定值调节系统来说,过渡过程的最大偏差就是被调参数第一个波峰值与给定值的差A,随动调节系统中常采用超调量这个指标B,在y(∞)不等于给定值时:超调量=[Y(Tm)-Y(∞)]/Y(∞)×100%,(A—最大偏差;B—超调量)。
对于一个自然振荡频率为ω0、衰减系数为ξ的二阶系统来说,在受到单位阶跃干扰δ(t)=I(t)后,被调参数变化过程的数学表达式是:
超调量是指输出量的最大值减去稳态值,与稳态值之比的百分数,二阶系统稳态输出为最大输出在峰值时为最大,把tm代入输出公式,减1除t等于把ξ代入,可求出%表达式。超调量只与阻尼比与有关。对于RLC二阶系统,阻尼比ξ=L/2R * sqrt(1/(LC)),ξ越大,超调量越小。
扩展资料:
超调的应用
1.电子学
在电子学中,过冲是指,从一个值转变到另一个值时,任何参数的瞬时值超过它的最终(稳态)值。过冲在放大器的输出信号中有重要的意义。过冲发生于瞬时值超过最终值。当瞬时值低于最终值时,也称为“下冲(undershoot)”。
一般电路设计,多半会使上升时间最小化,同时也将失真限制在可接受范围内。
(1)过冲表现为信号的失真。
(2)在电路设计中,最小化过冲与减小上升时间的目标会发生冲突。
(3)过冲的大小依赖于经历阻尼现象的时间。
(4)过冲通常伴有安定时间,即输出到达稳态的时长。
2.数学
在函数近似时,过冲也是用来描述近似品质的一个特点。
若一函数(例如方波)用许多函数的和(例如傅里叶级数或是正交多项式展开)来表示时,在原函数转折的部分可能就会有过冲、下冲及振铃的情形。若多项式的项次越多,近似函数和原函数的偏差也会减缓。不过近似项次越多,振荡周期会变长,但其振幅却不会改变,这就是吉布斯现象。
在傅里叶变换中,这可以用在一定频率以下的函数近似阶跃函数来表示,结果会得到正弦积分。可以用和Sinc函数的卷积来表示,在信号处理中,这是低通滤波器。