数值分析第五版电子版_数值积分

复习思考题

  1. 对给定求积公式的节点,给出求解求积系数的两种方法

借助代数精度来求解参数、借助插值函数来求解求积系数

2.牛顿-柯特斯公式的代数精度。

若阶n(n等分)为偶数,则至少有n+1次代数精度,若n为奇数,则至少有n次代数精度

以下讨论的求积公式,均在区间

上。

梯形公式

公式:

余项:

代数精度:1

几何意义:用梯形面积代替原来的曲边梯形面积

还是插值型积分公式

中矩形公式

公式:

余项:

代数精度:1

几何意义:用矩形面积代替原来的曲边梯形面积

辛普森求积公式

公式:

因为插值函数是二次多项式,故也称为抛物线求积公式

余项:

代数精度:3

几何意义:用抛物线面积代替原来的曲边梯形面积

柯特斯公式

公式:

余项:

代数精度:5

定理:

419c61dcf2a047a44e0d73b6ada25826.png
来源:《数值分析》第五版 李庆扬 等

梯形公式的递推

公式:

优点:简单,便于编程。

缺点:收敛速度慢,如果我们想要达到比较好的精度,必须算大量的分点。这不是我们想要的。

对上述算法的改进。就出现了龙贝格算法。

龙贝格算法能够在计算量相比梯度递推公式来说比较少的情况下获得与之一样的精度(也就是收敛的更快)。

108590b2bbafe3f51a302ded53b2ef72.png

因此,Romberg算法的终止条件可以为

358463814f455a82e560afc926580aad.png

其中,每一列都有相同的误差阶数。分别是2 4 6 8 ....,一般每列的后面越接近真实值。

关于Romberg求积公式的代数精度,后续再研究。

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值