力的合成
- 合力与分力:当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力产生的效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力,原来的几个力叫做分力.诠释:
①合力与分力是针对同一受力物体而言.
②一个力之所以是其他几个力的合力,或者其他几个力是这个力的分力,是因为这一个力的作用效果与其他几个力共同作用的效果相当,合力与分力之间的关系是一种等效替代的关系.
③合力与分力是一种等效替代的关系,即分力与合力虽然不同时作用在物体上,但可以相互替代,能够相互替代的条件是分力和合力的作用效果相同,但不能同时考虑分力的作用与合力的作用.
④两个力的作用效果可以用一个力替代,进一步想,满足一定条件的多个力的作用效果也可由一个力来替代 - 力的合成:求几个力的合力的过程叫做力的合成.说明:力的合成的实质是找一个力去替代作用在物体上的几个已知的力,而不改变其作用效果的方法.
- 平行四边形定则:(1)内容:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这个法则叫做平行四边形定则.如图1所示:
说明:平行四边形定则是矢量运算的基本法则.(2)应用平行四边形定则求合力的三点注意:
①力的标度要适当;
②虚线、实线要分清,表示分力和合力的两条邻边和对角线画实线,并加上箭头,平行四边形的另两条边画虚线;
③求合力时既要求出合力的大小,还要求出合力的方向,不要忘了用量角器量出合力与某一分力间的夹角.
- 三角形定则:把两个矢量首尾相接从而求出合矢量,这个方法叫做三角形定则.如图2所示:
共点力
- 定义:一个物体受到的力作用于物体上的同一点或者它们的作用线交于一点,这样的一组力叫做共点力.(我们这里讨论的共点力,仅限于同一平面的共点力).
- 共点力的合成:遵循平行四边形定则.
- 合力与分力的大小关系:由平行四边形可知:
![]()
、
![]()
夹角变化时,合力
![]()
的大小和方向也发生变化,如图3:
合力F的范围:
![]()
.
注意:
①两分力同向时,合力F最大:
![]()
.
②两分力反向时,合力F最小,
![]()
.
③两分力有一夹角
![]()
时,如图甲所示,在平行四边形
![]()
中,将
![]()
平移到
![]()
末端,则
![]()
、
![]()
、
![]()
围成一个闭合三角形.如图乙所示,由三角形知识可知:
总结:
①合力F的范围:
![]()
.
②两分力夹角越大,合力就越小.
③合力可能大于某一分力,也可能小于任一分力.
力的分解
- 分力:几个力,如果它们产生的效果跟原来一个力产生的效果相同,这几个力就叫做原来那个力的分力. 注意:几个分力与原来那个力是等效的,它们可以相互替代,并非同时存在.
- 力的分解:求一个已知力的分力叫力的分解.
- 力的分解定则:平行四边形定则,力的分解是力的合成的逆运算.说明:两个力的合力唯一确定,一个力的两个分力不是唯一的,如果没有其他限制,对于一条对角线,可以作出无数个不同的平行四边形(如图所示).即同一个力F可以分解成无数对大小、方向不同的分力.如图4:
分解力的方法
- 按效果进行分解:在实际分解中,常将一个力沿着该力的两个效果方向进行分解,效果分解法的方法步骤:
①画出已知力的示意图;
②根据此力产生的两个效果确定出分力的方向;
③以该力为对角线作出两个分力方向的平行四边形,即作出两个分力.
如图5所示,物体的重力
![]()
按产生的效果分解为两个分力,
![]()
使物体下滑,
![]()
使物体压向斜面.
- 利用平行四边形定则求分力的方法:(1)作图法:利用平行四边形作出其分力的图示,按给定的标度求出两分力的大小,用量角器量出各分力与已知力间的夹角即分力的方向.(2)计算法:利用力的平行四边形定则将已知力按几何方法求解,作出各力的示意图,再根据解几何知识求出各分力的大小,确定各分力的方向.
由上可知,解决力的分解问题的关键是根据力的作用效果,画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题.因此其解题的基本思路可表示为图6所示:
力的分解中定解条件
将一个力F分解为两个分力,根据力的平行四边形定则,是以这个力F为平行四边形的一条对角线作一个平行四边形,在无附加条件限制时可作无数个不同的平行四边形,这说明两个力的合力可唯一确定,一个力的分力不是唯一的,要确定一个力的两个分力,一定要有定解条件.
(1):已知合力(大小、方向)和两个分力的方向,则两个分力有唯一确定的值.如图7中甲图所示,要求把已知力F分解成沿
![]()
、
![]()
方向的两个分力,可从
![]()
的矢(箭头)端作
![]()
、
![]()
的平行线,画出力的平行四边形得两个分力
![]()
、
![]()
.
(2):已知合力(大小、方向)和一个分力(大小、方向),则另一个分力有唯一确定的值.如图7中乙图所示,已知
![]()
(合力),分力
![]()
,则连接
![]()
和
![]()
的矢端,即可作出力的平行四边形得另一个分力
![]()
.
(3):已知合力(大小、方向)和两分力大小,则两分力有两组解,如图8所示,分别以O点和F的矢端为圆心,以F1、F2大小为半径作圆,两圆交于两点,作出三角形如图8所示.
(4):已知合力(大小、方向)和一个分力的方向,则另一分力无确定值,且当两分力垂直时有最小值.如图9所示,假设
![]()
与
![]()
的夹角为
![]()
,分析方法如下:
以
![]()
的尾端为圆心,以
![]()
的大小为半径画圆,看圆与
![]()
的交点即可确定解释的情形.
①当
![]()
时,圆(如圆①)与
![]()
无交点,无解;
②当
![]()
时,圆(如圆②)与
![]()
有一交点,故有唯—解,且F2最小;
③当
![]()
时,圆(如圆③)与
![]()
有两交点,有两解;
④当
![]()
时,圆(如圆④)与
![]()
有一交点,有唯—解.
实验验证力的平行四边形定则
- 实验目的:
验证力的平行四边形定则 - 实验器材:
方木板、白纸、弹簧测力计(两个)、橡皮筋、细绳套(两个)、铅笔、三角板、刻度尺、图钉 - 实验原理:
结点受三个共点力作用处于平衡状态,则
![]()
、
![]()
之合力必与
![]()
平衡,改用一个拉力
![]()
使结点仍到
![]()
,则
![]()
必与
![]()
、
![]()
的合力等效,与
![]()
平衡,以
![]()
、
![]()
为邻边作平行四边形求出合力
![]()
,比较
![]()
与
![]()
的大小和方向,以验证力合成时的平行四边形定则
- 实验步骤:(1):用图钉把白纸钉在方木板上.(2):把方木板平放在桌面上,用图钉把橡皮条的一端固定在
![]()
点,橡皮条的另一端拴上细绳套.
(3):用两只弹簧秤分别钩住细绳套,互成角度的拉橡皮条,使橡皮条伸长到某一位置
![]()
(如图10所示)用铅笔描下
![]()
点的位置和两条细绳的方向,并记录弹簧秤的读数.注意在使用弹簧秤的时候,要使细绳与木板平面平行.
(4):用铅笔和刻度尺从力的作用点(位置
![]()
)沿着两条绳套的方向画直线,按选定的标度作出这两只弹簧秤的拉力
![]()
和
![]()
的图示,以
![]()
和
![]()
为邻边利用刻度尺和三角板作平行四边形,过
![]()
点画平行四边形的对角线,即为合力
![]()
的图示
(5):只用一只弹簧秤通过细绳套把橡皮条的结点拉到同样的位置
![]()
,记下弹簧秤的读数和细绳的方向,用刻度尺从
![]()
点按选定的标度沿记录的方向作出这只弹簧秤的拉力
![]()
的图示
(6):比较一下,力
![]()
与用平行四边形法则求出的合力
![]()
在大小和方向上是否相同
(7):改变两个力
![]()
、
![]()
的大小和夹角,再重复实验两次
- 注意事项:(1):弹簧测力计在使用前应检查、校正零点,检查量程和最小刻度单位.(2):用来测量
![]()
和
![]()
的两个弹簧测力计应用规格、性能相同,挑选的方法是:将两只弹簧测力计互相钩着,向相反方向拉,若两弹簧测力计对应的示数相等,则可同时使用.
(3):使用弹簧测力计测拉力时,拉力应沿弹簧测力计的轴线方向,弹簧测力计、橡皮筋、细绳套应位于与木板平行的同一平面内,要防止弹簧卡壳,防止弹簧测力计或橡皮筋与纸面摩擦.拉力应适当大一些,但拉伸时不要超出量程.(4):选用的橡皮筋应富有弹性,能发生弹性形变,实验时应缓慢地将橡皮筋拉伸到预定的长度.同一次实验中,橡皮筋拉长后的结点位置必须保持不变.(5):准确作图是本实验减小误差的重要一环,为了做到准确作图,拉橡皮筋的细绳要长一些;结点口的定位应力求准确;画力的图示时应选用恰当的单位标度;作力的合成图时,应尽量将图画得大些.(6):白纸不要过小,并应靠木板下边缘固定,A点选在靠近木板上边的中点为宜,以使O点能确定在纸的上侧.
例题
【例1】关于
![]()
、
![]()
及它们的合力F,下列说法中正确的是( )
![]()
.合力F一定与F1、F2共同作用产生的效果相同
![]()
.两力F1、F2一定是同种性质的力
![]()
.两力F1、F2一定是同一个物体受到的力
![]()
.两力F1、F2与F是物体同时受到的三个力
【解析】:只有同一个物体受到的力才能合成,分别作用在不同物体上的力不能合成.合力是对原来几个分力的等效替代,两力可以是不同性质的力,但合力与分力不能同时存在.所以,正确选项为
![]()
、
![]()
.
【答案】:
![]()
.
【总结】:合力与分力之间满足平形四边形定则,解答本题的关键是明确合力的作用效果与几个分力同时作用的效果相同,合力与分力是等效替代关系.
【例2】力
![]()
,方向向东,力
![]()
,方向向北.求这两个力合力的大小和方向.
【解析】:本题可用作图法和计算法两种方法求解:
(1)作图法:
①用
![]()
长的线段代表
![]()
,作出
![]()
的线段长
![]()
,
![]()
的线段长
![]()
,并标明方向,如图11所示:
②以
![]()
和
![]()
为邻边作平行四边形,连接两邻边所夹的对角线
③用刻度尺量出表示合力的对角线长度为
![]()
,即
![]()
,所以合力大小:
![]()
④用量角器量得
![]()
与
![]()
的夹角
![]()
,即合力方向为北偏东
(2)计算法:分别作出
![]()
、
![]()
的示意图,如图12所示,并作出平行四边形及对角线:
在直角三角形中:
合力
![]()
与
![]()
的夹角为
![]()
,则:
![]()
查表得
![]()
,即合力方向为北偏东
![]()
.
【总结】:
①应用作图法时,各力必须选定同一标度,并且合力、分力比例适当,虚线、实线分清.
②作图法简单、直观,但不够精确.
③作图法是物理学中的常用方法之一.
④请注意图1与图2的区别.
【例3】大小分别是
![]()
、
![]()
、
![]()
的三个力合成,其合力F大小的范围是( )
![]()
.
![]()
.
【解析】:三力的合力求其大小的范围,则先确定两力合成的大小范围,
![]()
和
![]()
的合力
![]()
最大值为
![]()
,最小值为
![]()
,也就是大小可能为
![]()
,若是
![]()
的方向与
![]()
力的方向相反,这两力合成后的合力可能为零.若
![]()
的大小为
![]()
时,其方向与
![]()
的方向相同时,合力的大小可能为
![]()
,实际上就是三个力的方向相同的结果.综上所述,选项
![]()
正确.
【答案】:
![]()
.
【总结】:三个力的合力,可以先将其中的两个力合成,然后与剩下的一个力再合成,先将其中任意两个力合成,然后看剩余的力是否在这两个力合力的范围内,若在,合力最小一定为零.若不在,将剩余的力与这两个力的合力作差,最小值就是最小的合力.合力最大值将所有的力求和即可.
【例4】如图13所示,F1 、F2 、F3组成了一个三角形,下列说法正确的是( )
![]()
.
![]()
是
![]()
、
![]()
的合力
![]()
.
![]()
是
![]()
、
![]()
的合力
![]()
.
![]()
是
![]()
、
![]()
的合力
![]()
.以上都不对
【解析】:在力的三角形图中,如果有两个顺向箭头,比如题中的
![]()
和
![]()
,这两个力就是分力;另一个力就是合力.
【答案】:
![]()
.
【总结】:根据平行四边形定则,合力和两个分力必构成一个封闭的矢量三角形,叫做力的三角形定则.如图14所示:
但是,在不标箭头的三角形不能确定谁是合力.
【例5】如图15所示,假设物体沿斜面下滑,根据重力的作用效果将重力分解,关于分解后的两个分力,下列叙述正确的是( )
![]()
.平行于斜面方向使物体沿斜面下滑的力
![]()
.垂直于斜面对斜面的压力
![]()
.垂直于斜面使物体压紧斜面的力
![]()
.物体至少要受到重力以及重力的两个分力三个力的作用
【解析】:重力的两个作用效果,可分解为平行于斜面方向使物体沿斜面下滑的力和垂直于斜面使物体压紧斜面的力.
![]()
答案在于分力的作用点作用于斜面上,作用点应保持不变,所以不正确.
![]()
答案重复考虑了力的作用效果.
【答案】:
![]()
.
【总结】:分解力应该按照它的实际效果来分解,力的分解只是研究问题的一种方法,分力的作用点要和已知力的作用点相同。若考虑了分力的作用效果,就不能考虑合力的作用效果,或者考虑了合力的作用效果后,就不能考虑分力的作用效果,否则就是重复考虑了力的作用效果.
【例6】一根长为L的易断的均匀细绳,两端固定在天花板上的A、B两点.若在细绳的C处悬一二重物,已知AC>CB,如图17所示.则下列说法中正确的应是( )
![]()
.增加重物的重力,
![]()
段先断
![]()
.增加重物的重力,
![]()
段先断
![]()
.将
![]()
端往左移比往右移时绳子容易断
![]()
.将
![]()
端往右移时绳子容易断
【解析】:研究
![]()
点,
![]()
点受重物的拉力,其大小等于重物的重力,即
![]()
.
将重物对
![]()
点的拉力分解为
![]()
和
![]()
两段绳的拉力,其力的平行四边形如图18所示,因为
![]()
,所以
![]()
.
当增加重物的重力
![]()
时,按比例
![]()
增大的较多,所以
![]()
段绳先断,因此选项
![]()
是正确的,而选项
![]()
是不正确的.
将
![]()
端往左移时,
![]()
与
![]()
两力夹角变大,合力
![]()
一定,则两分力
![]()
与
![]()
都增大.将
![]()
端向右移时两分力夹角变小,两分力也变小,由此可知选项
![]()
是正确的,而选项
![]()
是错误的.
【总结】:将重物对
![]()
点的拉力分解为
![]()
和
![]()
两段绳的拉力,转化成数学中三角形的相关边、角关系即可求解.把数学中三角形的相关边、角关系,迁移到力的矢量图的分析中来,这种能力是学习中必须具备的.
【例7】在做完“验证力的平行四边形定则”实验后,某同学将其实验操作过程进行了回顾,并在笔记本上记下如下几条体会,你认为他的体会中正确的是( )
![]()
.用两只弹簧秤拉橡皮条时,应使两细绳套间的夹角为
![]()
,以便算出合力的大小
![]()
.用两只弹簧秤拉时合力的图示
![]()
与用一只弹簧秤拉时图示 不完全重合,在误差允许范围内,可以说明“力的平行四边形定则”成立
![]()
.若
![]()
、
![]()
方向不变,而大小各增加
![]()
,则合力的方向也不变,大小也增加
![]()
.在用弹簧秤拉橡皮条时,要使弹簧秤的弹簧与木板平面平行
【解析】:用两只弹簧秤拉橡皮条时,应使两细绳套间的夹角不要太小,也不易太大,以便求出合力的大小.夹角不一定为
![]()
.实验总是存在误差,在误差允许的范围内,用两只弹簧秤拉时合力的图示
![]()
与用一只弹簧秤拉时图示不完全重合,可以说明“力的平行四边形定则”成立.
![]()
正确.在用弹簧秤拉橡皮条时,要使弹簧秤的弹簧与木板平面平行,这样读数才能更准确.
![]()
正确.
![]()
答案不正确,可假设
![]()
、
![]()
方向不变,相互垂直,而大小各增加
![]()
,则合力不会增大
![]()
.
【答案】:
![]()
.
【总结】:要清楚验证力的平行四边形定则的实验步骤及误差分析.【】