应用场景:
- 用户签到
- 用户在线状态
- 统计活跃用户
- 各种状态值
- 自定义布隆过滤器
- 点赞功能
基本命令:
SETBIT
对 key 所储存的字符串值,设置或清除指定偏移量上的位(bit)。SETBIT key offset value
offset 参数必须大于或等于 0 ,小于 2^32 (bit 映射被限制在 512 MB 之内)。
GETBIT
对 key 所储存的字符串值,获取指定偏移量上的位(bit)。GETBIT key offset
BITCOUNT
计算给定字符串中,被设置为 1 的比特位的数量。BITCOUNT key
BITPOS
返回位图中第一个值为 bit 的二进制位的位置。BITPOS key bit [start] [end]
BITOP
对一个或多个保存二进制位的字符串 key 进行位元操作,并将结果保存到 destkey 上。BITOP operation destkey key [key …]
operation 可以是 AND 、 OR 、 NOT 、 XOR 这四种操作中的任意一种BITOP AND destkey key [key ...]
,对一个或多个 key 求逻辑并,并将结果保存到 destkey 。
BITFIELD
bitfield 有三个子指令,分别是 get/set/incrby,它们都可以对指定位片段进行读写,但是最多只能处理 64 个连续的位,如果超过 64 位,就得使用多个子指令,bitfield 可以一次执行多个子指令。
基本操作:
操作分析:
注意:位图占用空间计算,如下图:
如果key的位占够10位了,string长度为154320987字节,可以推测key占用了147M左右的内存,造成了空间上的浪费,因为100000000之前的位都没有用到,使用bitmap时要慎重。
底层数据结构分析
SDS是redis中的一种数据结构,叫做简单动态字符串(Simple Dynamic String),并且它是一种二进制安全的,在大多数的情况下redis中的字符串都用SDS来存储。
SDS的数据结构:
struct sdshdr {
#记录buff数组中已使用字节的数量
#也是SDS所保存字符串的长度
int len;
#记录buff数组中未使用字节的数量
int free;
#字节数组,字符串就存储在这个数组里
char buff\[\];
}
数据存储示例:
SDS的优点:
-
时间复杂度为O(1)
-
杜绝缓冲区溢出
-
减少修改字符串长度时候所需的内存重分配次数
-
二进制安全的API操作
-
兼容部分C字符串函数
redis中的位数组采用的是String字符串数据格式来存储,而字符串对象使用的正是上文说的SDS简单动态字符串数据结构。
大家都知道的是一个字节用的是8个二进制位来存储的,也就是8个0或者1,即一个字节可以存储十进制0~127的数字,也即包含了所有的数字、英文大小写字母以及标点符号。
1Byte=8bit 1KB=1024Byte 1MB=1024KB 1GB=1024MB
位数组在redis存储世界里,每一个字节也是8位,初始都是:
0 0 0 0 0 0 0 0
而位操作就是在对应的offset偏移量上设置0或者1,比如将第3位设置为1,即:
0 0 0 0 1 0 0 0
#对应redis操作即:
setbit key 3 1
在此基础上,如果要在偏移量为13的位置设置1,即:
setbit key 13 1
#对应redis中的存储为:
0 0 1 0 | 0 0 0 0 | 0 0 0 0 | 1 0 0 0
时间复杂度
GETBIT命令时间复杂度O(1)
STEBIT命令时间复杂度O(1)
BITCOUNT命令时间复杂度O(n)
BITOP命令时间复杂度O(n)、O(n2)
我们来看GETBIT以及SETBIT命令的时间复杂度为什么是O(1),当我们执行一个SETBIT key 10086 1的值的时候,reids的计算方式如下:
获取到要写入位数组中的哪个字节:10086÷8=1260,需要写入到位数组的下标1260的字节
获取要写入到这个字节的第几位:10086 mod 8 = 6,需要写入到这个字节的下标为6即第7位上去。
通过这两种计算方式大家可以清晰的看到,位操作的GETBIT和SETBIT都是常量计算,因此它的时间复杂度为O(1)。
而BITCOUNT命令需要对整个位数组的所有元素进行遍历算出值为1的有多少个,当然redis对于大数据了的bit执行bitcount命令会有一整套复杂的优化的算法,但是核心思路还是这个意思,无非是减少部分遍历查询次数。比如以128位为一次遍历,那么他的遍历次数就是所有的位数除以128。
BITTOP命令则是根据不同的操作有不同的执行方式。比如AND操作,则需要查看位值为1的即可。
存储空间计算
根据上面的介绍,相信大家已经知道了基于redis的位数组数据结构存储的数据占用内存大小是怎么计算的了。比如有100亿的数据,那么它需要的字节数组:
1000000000÷8÷1024÷1024≈119.21MB
也就是存储10亿的数据只需要119MB左右的内存空间,这对于现在动辄16G、32G集群版的redis,完全没有问题。
需要注意的是,如果你的数据量不大,那就不要把起始偏移量搞的很大,这样也是占空间的,比如我们只需要存储几百条数据,但是其中的偏移量却很大,这就会造成了很大的内存空间浪费。
应用场景:
用户签到场景
每天的日期字符串作为一个key,用户Id作为offset,统计每天用户的签到情况,总的用户签到数
活跃用户数统计
用户日活、月活、留存率等均可以用redis位数组来存储,还是以每天的日期作为key,用户活跃了就写入offset为用户id的位值1。
同理月活也是如此。
用户是否在线以及总在线人数统计
同样是使用一个位数组,用户的id映射偏移量,在线标识为1,下线标识为0。即可实现用户上下线查询和总在线人数的统计
APP内用户的全局消息提示小红点
现在大多数的APP里都有站内信的功能,当有消息的时候,则提示一个小红点,代表用户有新的消息。
位图计数:
位图计数 的意思是统计bitmap中值为1的位的个数,位统计的效率时很高的。
redis中允许使用二进制的key和二进制的value,bitmap就是二进制的value。
点赞/取消点赞:
假设用户ID为100,对照片ID为100的照片进行点赞。首先根据照片ID生成数据存储的redis key,比如生成策略是like_photo:{photo_id},用户ID为1000的用户点赞只需将like_photo:100的第1000位设置为1即可(取消置为0)。
redis setbit操作的时间复杂度为O(1),所以这种点赞方式十分高效。
当前是否点赞:
用户打开图片的时候需要查询当前是否点赞过该照片,查询是否点赞可以通过redis getbit操作实现。
查询点赞总次数:
比如需要显示照片ID为1000的照片的获赞总次数,只需对like_photo:1000进行位图计数操作即可:bitcount。时间复杂度为O(N)。个人以为可以在照片表中加一个字段记录获赞总次数,这样就不用循环统计各个照片的获赞次数。
redis还提供了bittop等其他一些API,可以实现一些有趣的事。
局限性:
当用户量很大的时候,比如千万级用户量的时候,最坏的情况下一个点赞bitmap需要消耗的内存为10000000/8/1024/1024=1.19MB,