假设我想计算网格上每个点的值。我将定义一些函数func,它将两个值x和y作为参数,并返回第三个值。在下面的示例中,计算此值需要在外部字典中查找。然后,我将生成一个点网格,并对每个点进行评估,以获得我想要的结果。
下面的代码确实做到了这一点,但有点迂回。首先,我将x和y坐标矩阵重新整形为一维数组,计算所有值,然后将结果重新整形为矩阵。我的问题是,这能以更优雅的方式完成吗?import collections as c
# some arbitrary lookup table
a = c.defaultdict(int)
a[1] = 2
a[2] = 3
a[3] = 2
a[4] = 3
def func(x,y):
# some arbitrary function
return a[x] + a[y]
X,Y = np.mgrid[1:3, 1:4]
X = X.T
Y = Y.T
Z = np.array([func(x,y) for (x,y) in zip(X.ravel(), Y.ravel())]).reshape(X.shape)
print Z
此代码的目的是生成一组值,我可以在matplotlib中与func一起使用这些值来创建heatmap类型的图。
最佳答案:
我将使用numpy.vectorize来“向量化”您的函数。请注意,尽管有这个名称,vectorize并不是为了让代码运行得更快——只是稍微简化一下。
以下是一些例子:>>> import numpy as np
>>> @np.vectorize
... def foo(a, b):
... return a + b
...
>>> foo([1,3,5], [2,4,6])
array([ 3, 7, 11])
>>> foo(np.arange(9).reshape(3,3), np.arange(9).reshape(3,3))
array([[ 0, 2, 4],
[ 6, 8, 10],
[12, 14, 16]])
有了您的代码,就足够用func来修饰np.vectorize了,然后您可能只需要将其称为func(X, Y)——noraveling或reshapeing必要:
import numpy as np
import collections as c
# some arbitrary lookup table
a = c.defaultdict(int)
a[1] = 2
a[2] = 3
a[3] = 2
a[4] = 3
@np.vectorize
def func(x,y):
# some arbitrary function
return a[x] + a[y]
X,Y = np.mgrid[1:3, 1:4]
X = X.T
Y = Y.T
Z = func(X, Y)