本文是动力电池大数据应用系列的第八篇,这篇讲电池包温度均一性评估。
《动力电池大数据应用_方法探讨#1》
《动力电池大数据应用_电池容量#2》
《动力电池大数据应用_电池体检#3》
《动力电池大数据应用_人才与思路#4》
《
动力电池大数据应用_大数据平台架构#5
》
《
动力电池大数据应用_充电业务风控#6
》
《
动力电池大数据应用_充电速度慢,谁背锅?#7
》
电池包温度均一性主要通过仿真测试、台架测试、路试测试进行评估,虽然开发过程中进行的这些测试已经考虑了车辆可能遇到的大多数工况,但是用户使用场景层出不穷,各种在设计和测试阶段认为不可能的奇葩场景在实际情况都可能碰到,导致用户使用的工况还是可能超过测试涵盖范围,并且随着车辆的使用,实际电池状况已经发生了变化,与测试电池状况可能存在较大偏差,因此基于车联网的历史数据对电池包温度均一性进行动态评估非常有必要。
评估方法
1、某电池包温度传感器分布示意图如图1所示,每个模组布置一个温度传感器,总共24个温度传感器;
2、车辆上线时,数据传输频率为10S/次(故障时为1S/次),对每次传输的数据进行如下计算:a:计算24个温度传感器的平均温度,计算24个温度传感器与平均温度的温差;b:分别求每个温度传感器的温差分属以下[-∞~-5.0),[-5.0~-3.5),[-3.5~-2.0),[-2.0~-0.5),[-0.5~0.5),[0.5~2.0),[2.0~3.5),[3.5~5.0),[5.0~∞)各温度区间数据条数;
3、计算各温度区间温差数据占比,占比=各温度区间温差数据条数/(数据总条数*24)*100%,对数据进行可视化,可以直观查看电池包温度分布情况,具体见图2和图3。
注:计算指标可根据需要进行拓展。
图1 某电池包温度传感器分布示意图
结论分析
图2为电池包温度分布情况,图中第一列为温度传感器序号,第一行为温度区间,其他区域为各温度区间温差数据占比,此处将数据隐去,并且进行可视化处理,柱状条的长度代表数据量的多少。从图中可知t4、t5、t20、t21处温度较低,t1、t8、t9、t16、t17、t24处温度较高。
图2 电池包温度分布情况
将温度分布情况绘制在电池包温度分布示意图中,见图3,从图中可知电池包温度分布规律为后部区域电池温度较高,前部区域电池温度较低,存在一定的温度差异。
图3 电池包温度分布情况示意图
进一步的,可以对温差数据进行分组,例如充电不加热、充电加热、行车不加热、行车加热等,进而确认导致电池包温场不一致的具体场景,并对热管理系统或者热管理策略作出相应的优化,进一步提高电池包温度均一性。
更进一步,可以对电池包温度均一性进行全生命周期追踪,对比初期、中期、后期电池包在不同场景下的温场变化,为热管理策略的OTA升级提供数据支撑。
本篇完。
感谢老铁阅读。
大数据平台容量评估_动力电池大数据应用_电池温度一致性评估?#8
最新推荐文章于 2022-09-06 14:42:26 发布