伍德里奇计量经济学_计量经济学-伍德里奇-第三章-回归-基础

Before We Start​yuedong.site
68738a03869982ac59c27a9d51514fcd.png

鄙人之前有个伍德里奇的笔记本,然而不幸遗失,悲痛之余意识到还是把笔记做成电子形式的比较保险和方便,因此这个系列我准备把伍德里奇整本书重新归纳成电子版,并将部分习题用R语言实现出来。此事确属不易,如有纰漏还望各位前辈指教!

零条件均值

在线性回归中,我们必须将无法观测的*u* 和解释变量*x* 之间的关系加以约束时,即使得两者不相关,这样才能从一个随机数据样本中获得 β0 和 β1 的可靠估计量。

然而单纯用相关系数进行约束是不全面的,因为u也可能与x的平方有关,因此更好的办法是对**给定x时u的期望值做出假定**。

这个假定意味着,

根据x值的不同把总体划分成若干部分,每个部分中无法观测的因素都具有相同的平均值,而且这个共同的平均值必然等于整个总体中u的平均值。

例子:以下模型表示工资水平和教育水平的关系

零条件均值假定意味着,无论教育水平如何,能力的水平都是相同的,如果我们认为平均能力是随着受教育程度的增加而递增的,那么这个模型就是错的,因为我们观测不到天生的能力,那么只好假定它是相等的。

普通最小二乘法的推导

x与u不相关和零条件均值假定十分重要,如果没有理解或回忆起来,请从头开始再看一遍。

为了帮助理解,试想:零条件均值意味着每个样本带入模型产生的残差是零均值同分布的,并且和x的取值无关(写道这里我想起了时间序列里的平稳性假定),也就是说,能力不会随着教育的增长而增长,而是零均值同分布的。(尽管现实中似乎并非如此 )

而且利用这两个假定我们可以化简出参数的表达式:

带入模型得:

等价于:(一阶条件)

化简出:

可以看出,系数β1无非是x和y的样本协方差与x的样本方差之比,这便是**普通最小二乘(ordinary least squares,OLS)**的估计值。关于OLS一阶条件必要性的证明见伍德里奇第五版p573。

由此我们便可以得到样本回归函数:(*hat表示拟合值,无hat表示观测值*)

样本回归函数是总体回归函数的一个样本估计。总体回归函数是固定而又未知的!

OLS统计量的代数性质

定义总平方和(SST)、解释平方和(SSE)和残差平方和(SSR):

SST度量了观测中的总样本波动,即度量了样本的分散程度;SSE度量了拟合值的样本波动(要考虑到残差拟合值的期望为零,那么y的拟合值期望就等于观测值的期望);SSR度量了残差拟合值的样本波动。观测的总波动总能表示成解释了的波动和未解释的波动之和,即SST=SSE+SSR

拟合优度

R方是可解释波动与总波动之比,即y中的样本波动中被x解释的部分,其值介于0-1之间。

在社会科学中,回归方程中的R^2过低是很正常的,特别是对横截面分析来说更是如此

度量单位和弹性

在社会科学的文献中,常常出现对数形式的模型,如工资-教育的例子。如果我们不取对数,那么意味着斜率估计值0.54,多接受一年教育,小时工资的提高数量,可能来自第一年的教育也可能来自第20年的教育,这恐怕是不合理的,但当我们使用对数时,就将其转化为了工资的增长率。

为什么呢?考虑如下方程

两边对*educ*求导:

由此可看出β1表示工资变动幅度除以教育的变动量。同理可得下表:

| 模型 | 因变量 | 自变量 | 参数含义 |

| --------- | ------ | ------ | --------------- |

| 水平-水平 | y | x | Δy=β1Δx |

| 水平-增长 | y | log(x) | Δy=(β1/100)%Δx |

| 增长-水平 | log(y) | x | %Δy=(100β1)Δx |

| 增长-增长 | log(y) | log(x) | %Δy=β1%Δx |

估计量的期望值和方差

当我们从总体中抽取不同随机样本并进行参数估计时,参数的分布和方差是怎么样的呢?

证明OLS参数是无偏的

构建OLS的无偏性需要以下5个假定:

1、线性于参数

在总体模型中,因变量和自变量的关系是线性的

2、随机抽样

我们具有一个服从总体模型的随机样本

3、解释变量的样本有波动

x的值不是完全相同的

4、零条件均值

给定解释变量的任何值,误差的期望值都为零

满足上述4和假定,我们就可以认为参数的估计量是无偏的,其证明十分复杂,详见课本p43-45。注意这里无偏必须严格满足上述假定,但现实中我们往往没那么幸运,譬如假设2的随机抽样,在一些样本的采集过程中往往不是那么“随机”

OLS估计量的方差

除了知道参数估计量是无偏的,能了解我们得出的估计值究竟距离总体参数有多远也非常重要,那么在不同样本得出的不同无偏的参数中,选择一个最佳的估计量就很重要,为了找到这个值,除了上述的4个假定外,下面将给出最后一个假定:

同方差性

给定解释变量的任何值,误差都具有相同的方差。注意,同方差假定对证明参数估计值的无偏性毫无作用,之所以增加假定5,是为了简化估计参数的方差计算

由于误差独立于x,那么可以说,给定x,y的条件期望线性于x,但给定x时y的方差却是常数。当u的条件方差取决于x时,就称误差项表现出异方差性,一个简单的例子是教育和工资的关系,如果我们假定误差的条件方差恒定,那么就认为工资的条件方差恒定,但现实中是,随着教育年数增长,人们可选择的工作类别更多,因此方差更大,而教育越低,可选择越少,方差越小。

至此,由以上5个假定我们可以导出估计参数的方差公式:

在我们考虑多元回归中的置信区间和假设检验问题时,他们的重要性就会体现出来了!由上述公式可以看出,首先,误差方差越大,估计参数的方差也越大,因为影响y的不可观测因素波动越大,要准确估计β就越难;另一方面,自变量的波动越大越好,随着自变量波动增加,估计参数的方差就越小。

耐心一点,马上就结束了!

误差方差的估计

首先你要搞清楚误差和残差的区别,不清楚的回头把文章再看一遍吧。

尽管hatβ0的期望等于β0,hatβ1的期望等于β1,但hatui却往往不等于ui,但二者之差的期望值却为零。重点来了,那我们不就可以用残差的方差来替代误差的方差了吗,有点绕请多读几遍。即

而估计量之所以有偏误,是因为在全样本量下,OLS的两个一阶条件往往不能满足,即残差条件期望为0,残差与x无关。考虑这个问题方法是SSR/n-2,即

这个估计量有时记为s^2,由此我们便得到了误差方差的无偏估计量,其无偏性证明详见书本p50。从而我们可以得到估计参数的方差和标准误了,这个标准误在接下来的统计量检验中非常之重要,请将无偏性证明多看几遍!!

  • 1
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值