python爬取微博热搜写入数据库_python,selenium爬取微博热搜存入Mysql

本文介绍如何使用Python结合selenium爬取微博热搜数据,并存储到MySQL数据库中。通过定位网页元素,获取热搜标题和链接,利用pandas处理数据并存入数据库。
摘要由CSDN通过智能技术生成

最终的效果 废话不多少 直接上图这里可以清楚的看到 数据库里包含了日期 内容 和网站link 下面我们来分析怎么实现 使用的库 import requestsfrom selenium.webdriver import Chrome,

python爬取微博热搜存入Mysql

最终的效果

使用的库

目标分析

一:得到数据

二:链接数据库

总代码

最终的效果

废话不多少,直接上图

79cb40594abdc709d8bd54034df8eb69.png

这里可以清楚的看到,数据库里包含了日期,内容,和网站link

下面我们来分析怎么实现

使用的库

import requests

from selenium.webdriver import Chrome, ChromeOptions

import time

from sqlalchemy import create_engine

import pandas as pd

目标分析

这是微博热搜的link:点我可以到目标网页

07abd25de586e4041a31672fc8fedfdc.png

首先我们使用selenium对目标网页进行请求

然后我们使用xpath对网页元素进行定位,遍历获得所有数据

然后使用pandas生成一个Dataframe对像,直接存入数据库

一:得到数据

327e498c89c37afc9322e9b388d9745e.png

我们看到,使用xpath可以得到51条数据,这就是各热搜,从中我们可以拿到链接和标题内容

all = browser.find_elements_by_xpath('//*[@id="pl_top_realtimehot"]/table/tbody/tr/td[2]/a') #得到所有数据

context = [i.text for i in c] # 得到标题内容

links = [i.get_attribute('href') for i in c] # 得到link

然后我们再使用zip函数,将date,context,links合并

zip函数是将几个列表合成一个列表,并且按index对分列表的数据合并成一个元组,这个可以生产pandas对象。

dc = zip(dates, context, links)

pdf = pd.DataFrame(dc, columns=['date', 'hotsearch', 'link'])

其中date可以使用time模块获得

二:链接数据库

这个很容易

enging = create_engine("mysql+pymysql://root:123456@localhost:3306/webo?charset=utf8")

pdf.to_sql(name='infromation', con=enging, if_exists="append")

总代码

from selenium.webdriver import Chrome, ChromeOptions

import time

from sqlalchemy import create_engine

import pandas as pd

def get_data():

url = r"https://s.weibo.com/top/summary" # 微博的地址

option = ChromeOptions()

option.add_argument('--headless')

option.add_argument("--no-sandbox")

browser = Chrome(options=option)

browser.get(url)

all = browser.find_elements_by_xpath('//*[@id="pl_top_realtimehot"]/table/tbody/tr/td[2]/a')

context = [i.text for i in all]

links = [i.get_attribute('href') for i in all]

date = time.strftime("%Y-%m-%d-%H_%M_%S", time.localtime())

dates = []

for i in range(len(context)):

dates.append(date)

# print(len(dates),len(context),dates,context)

dc = zip(dates, context, links)

pdf = pd.DataFrame(dc, columns=['date', 'hotsearch', 'link'])

# pdf.to_sql(name=in, con=enging, if_exists="append")

return pdf

def w_mysql(pdf):

try:

enging = create_engine("mysql+pymysql://root:123456@localhost:3306/webo?charset=utf8")

pdf.to_sql(name='infromation', con=enging, if_exists="append")

except:

print('出错了')

if __name__ == '__main__':

xx = get_data()

w_mysql(xx)

希望能够帮到大家一点,大家一起共同进步,共同成长!

祝大家新年快乐!!!

以上信息来源于网络,如有侵权,请联系站长删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值