点在不规则图形内算法python_目标检测算法中规则矩形和不规则四边形IOU的Python实现...

本文介绍了如何在Python中计算不规则四边形的Intersection-over-Union(IoU),包括规则矩形的两种IoU计算方法和使用Shapely库处理不规则四边形的交并比。此外,还提供了避坑指南,如处理Shapely库的导入错误。
摘要由CSDN通过智能技术生成

交并比(Intersection-over-Union,IoU),目标检测中使用的一个概念,我们在进行目标检测算法测试时,重要的指标,是产生的预测框(candidate bound)与标记框(ground truth bound)的交叠率,即它们的交集与并集的比值。最理想情况是完全重叠,即比值为1。

通常,我们所说的目标检测检测的框是规则的矩形框,计算IOU也非常简单,一般两种方法:

两个矩形的宽之和减去组合后的矩形的宽就是重叠矩形的宽,同比重叠矩形的高。

右下角的最小值减去左上角的最大值就是重叠矩形的宽,同比高。

上述规则四边形(矩形)IOU计算方式一的 Python实现

def calculate_regular_iou(rec1, rec2):

"""

computing IoU

:param rec1: (y0, x0, y1, x1), which reflects

(top,left, bottom,right)

:param rec2: (y0, x0, y1, x1)

:return: scala valueofIoU

"""

S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])

S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])

sum_area = S_rec1 + S_rec2

left_line = max(rec1[

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值