扩展欧几里得_质数、约数、简单的欧几里得算法

本文详细介绍了质数和合数的相关概念,并提供了多种算法实现,包括试除法判断质数、分解质因数、筛法求质数、计算约数个数和约数之和。通过实例代码展示了如何高效地进行这些计算,同时涵盖了欧几里得算法的最大公约数计算。
摘要由CSDN通过智能技术生成

YOU CAN DRINK ALL YOU LIKE, BUT IN THE MORNING YOU GET HEADACHE WITH THE SAME PROBLEMS.


质数、约数、简单的欧几里得算法

题目原文在文末的原文链接中,在ACWING这个平台的题库中输入对应的题号即可

基础知识

  1. 所有小于等于1的数既不是质数也不是合数,在大于1的整数中,如果只包含1和本身这两个约数则为质数(素数)
  2. 质数的判定:试除法,时间复杂度一定是O(N^1/2)

866.试除法判定质数

#include 
using namespace std;

bool is_prime(int x) {
    if (x 2) return false;
    for (int i = 2; i <= x / i; i++) 
        if (x % i == 0) return false;
    return true;
}

int main() {
    int n;
    cin >> n;
    while (n--) {
        int x;
        cin >> x;
        if (is_prime(x)) puts("Yes");
        else puts("No");
    }
    return 0;
}
  1. 分解质因数:试除法(从小到大尝试N的所有因数,N中最多只包含一个大于N^1/2的质因子)时间复杂度最坏是O(N^1/2),最好是O(logN)

867.分解质因数

#include 
using namespace std;

void divide(int x) {
    for (int i = 2; i <= x / i; i++) {
        if (x % i == 0) {
            int s = 0;
            while (x % i == 0) x /= i, s++;
            cout <" " <endl;     
        }
    }
    if (x > 1) cout <" " <1 <endl;
    cout <endl;
}

int main() {
    int n;
    cin >> n;
    while (n--) {
        int x;
        cin >> x;
        divide(x);
    }
    return 0;
}
  1. 筛质数:
    1. 埃氏筛法:时间复杂度O(NloglogN)
    2. 线性筛法:每个数N只会被它的最小质因子筛掉(当i%primes[j]==0时,primes[j]一定是i的最小质因子,所以primes[j]一定是i*primes[j]的最小质因子;当i%primes[j]!=0时,所以primes[j]一定小于i的最小质因子,primes[j]一定是i*primes[j]的最小质因子。任何一个合数X一定存在一个最小质因子J,当i枚举到X/J时,此合数一定会被筛,因此每个合数只会被筛一次,所以时间复杂度为线性的。)时间复杂度O(N)

868.筛质数

// 埃氏筛法
#include 
using namespace std;

const int N = 1000010;

int primes[N], cnt;
bool st[N];

void get_primes(int n) {
    for (int i = 2; i <= n; i++) {
        if (st[i]) continue;
        primes[cnt++] = i;
        for (int j = i + i; j <= n; j += i)
            st[j] = true;
    }
}

int main() {
    int n;
    cin >> n;
    get_primes(n);
    cout <endl;
    return 0;
}
// 线性筛法
#include 
using namespace std;

const int N = 1000010;

int primes[N], cnt;
bool st[N];

void get_primes(int n) {
    for (int i = 2; i <= n; i++) {
        if (!st[i]) primes[cnt++] = i;
        for (int j = 0; primes[j] <= n / i; j++) {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}

int main() {
    int n;
    cin >> n;
    get_primes(n);
    cout <endl;
    return 0;
}
  1. 试除法求约数:时间复杂度一定是O(N^1/2)

869.试除法求约数

#include 
using namespace std;

vector<int> get_divisors(int x) {
    vector<int> res;
    for (int i = 1; i <= x / i; i++)
        if (x % i == 0) {
            res.push_back(i);
            if (i != x / i) res.push_back(x / i);
        }

    sort(res.begin(), res.end());
    return res;
}

int main() {
    int n;
    cin >> n;

    while (n--) {
        int x;
        cin >> x;
        auto res = get_divisors(x);

        for (auto x : res) cout <" ";
        puts("");
    }
    return 0;
}
  1. 约数个数:N=P1^A1+P2^A2+P3^A3+...+PK^AK,约数个数为(A1+1)(A2+1)(A3+1)...(AK+1),每一个P都有对应的A+1种选法,每个不同的选法,都能凑成一个不同的约数

870.约数个数

#include 
using namespace std;

const int N = 110, mod = 1e9 + 7;

int main() {
    int n;
    cin >> n;

    unordered_map<int, int> primes;

    while (n--) {
        int x;
        cin >> x;

        for (int i = 2; i <= x / i; i++)
            while (x % i == 0) {
                x /= i;
                primes[i]++;
            }

        if (x > 1) primes[x]++;
    }

    long long res = 1;
    for (auto p : primes) res = res * (p.second + 1) % mod;

    cout <endl;
    return 0;
}
  1. 约数之和:N=P1^A1+P2^A2+P3^A3+...+PK^AK,约数之和为(P1^0+P1^1+...+P1^A1)(P2^0+P2^1+...+P2^A1)(P3^0+P3^1+...+P3^A1)...(PK^0+PK^1+...+PK^A1),每个项选一个,凑成一个约数,累加

871. 约数之和

#include 
using namespace std;

const int N = 110, mod = 1e9 + 7;

int main() {
    int n;
    cin >> n;
    unordered_map<int, int> primes;

    while (n--) {
        int x;
        cin >> x;

        for (int i = 2; i <= x / i; i++) 
        while (x % i == 0) {
            x /= i;
            primes[i]++;
        }

        if (x > 1) primes[x]++;
    }

    long long res = 1;
    for (auto p : primes) {
        long long a = p.first, b = p.second;
        long long t = 1;
        while (b--) t = (t * a + 1) % mod;
        res = res * t % mod;
    }

    cout <endl;
    return 0;
}
  1. 欧几里得算法(辗转相除法):这只是最基本的用法,欧几里得的扩展定理明天会专门写一篇文章来讲解

872.最大公约数

#include 
using namespace std;

int gcd(int a, int b) {
    return b ? gcd(b, a % b) : a;
}

int main() {
    int n;
    cin >> n;
    while (n--) {
        int a, b;
        cin >> a >> b;
        cout <endl;
    }
    return 0;
}

0f055b22dd54b74f9cdb9a1b63f8a9f4.png

284ceca28158c255b23f188948090d78.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值