phpsql执行错误1064_【1077.】临床科研设计与数据分析9大易忽视错误(推荐)

临床试验设计的三原则

(一)干预措施(处理因素)

其实就是我们本次的研究因素,比如我们想研究X-ray对肺癌的疗效,那么X-ray就是干预措施。

(二)受试对象

凡是我们干预措施作用的受试物体都可以是受试对象,但临床试验一般指的是人。因具体的研究目的不同,可以是健康人,也可以是具体的某种病人,但必须根据研究目的,严格按照纳入和排除标准进行选择。

(三)试验效应

是指干预措施作用于受试对象后产生的效果或者反映。具体通过检测的指标来反映。检测指标有主观指标和客观指标构成,尽量获取客观检测的指标,因为主观指标产生偏倚的可能性较大。

当下落的苹果砸中牛顿的头

9ac706851f848f6eff92ebc02aa8462b.png

干预措施:落下的苹果

受试对象:牛顿

试验效应:疼痛感,万有引力思想,呵呵!

临床试验四原则

(一)随机原则

随机有三个层面的含义:

1.随机化抽样:是指在选取样本时,应该确保总体中的任何一个个体都有同等的机会被抽取到作为样本;

2.随机化分组:是指分配样本时,应确保任何一个个体都有同等的机会分配的各个受试组中去;

3.随机化顺序:我们在做交叉试验时,两种干预措施A、B先后施加到受试组,受试组接收A、B措施的顺序也要随机。

(二)对照原则

进行试验研究,必须设立对照组,以确定试验效应确实由干预措施导致或者产生。对照按照具体的安排形式,分为空白对照、试验对照、标准对照、潜在对照和安慰剂对照。

(三)重复原则

     由于个体差异的必然存在,同一处理措施对不同受试对象所产生的效果不尽相同,只有足够的重复,试验的真实效应才会稳定的显示出来,因此必须重复。重复有三个层面的含义,通常指的是样本量的重复。

(四)均衡原则

     所谓均衡,就是指单因素试验中,设法使对照组与试验组中的非试验因素尽量达到一致;而在多因素试验中,对照是指同一个试验因素各水平之间互为对照。均衡性最易被人们所忽视,同时又是重要的原则,考虑不周,研究结论不坚挺。

(五)盲法原则

       任何临床试验的目的,都是为了获得试验结果的无偏估计,然而试验结果所受影响因素太多,稍不留神就会产生偏倚,盲法的实施就是保证试验结果可靠的一种方法。

1.非盲性试验:开放性试验,研究者和受试对象都知道试验的分组情况,试验公开进行。多用于客观观察指标的试验,缺点容易产生偏倚。

2.单盲试验:研究者知道试验分组情况,而受试对象不知道试验分组情况,即不知道自己在试验组还是对照组。优点为研究者知道分组情况,可以更好的研究受试对象,必要时可以及时处理受试对象出现的意外问题,并且可以避免受试对象的主观因素的影响。缺点是不能避免研究执行者的主观因素所致的偏倚。

3.双盲试验:即研究者和受试对象均不知道试验分组的情况,而由研究设计者来安排和控制全部试验,优点可以控制研究者和受试对象两方面的主观因素导致的偏倚。缺点万一有紧急情况较难及时处理。

4.三盲试验:研究观察者、受试对象以及数据分析人员均不知道试验分组情况,相对较难进行。

临床试验大家最容易忽视的问题

(一)你的研究样本量够吗?(五级)

   这是标书申请、课题开题与结题,专家最容易询问的问题。貌似小问题,实则大问题,因为样本量小了,研究结果不可靠,样本量大了浪费人力、物力和财力。样本量是需要计算的,具体如何请看完。

(二)临床试验你考虑优效、等效和非劣校试验了吗?(三级)

   临床试验三种特殊的试验设计,在试验前必须设计好,每种设计的样本量计算公式不一样,研究目的不一样。

(三)你如何实施随机的?(五级)

 很多临床试验以及一些文章,试验分组仅用“随机”二字。难免大度了点,应该说出具体的随机方法,如抓阄、抽签、随机数字表、计算机随机等。

(四)多中心研究各中心样本量如何分配?(二级)

 多中心临床试验,一般5-10个中心较为合适,可是每个中心应该平均分配样本量吗?

(五)ITT分析与PP分析?(五级)

 临床研究不能像控制实验动物一样,除非死亡,不然必须参加。因此临床研究肯定会存在失访情况。那最后数据分析的时候,什么时候用全分析集(FAS)、核实符合方案集(PPS)、何时安全集(SS),你用对了吗?

(六)倾向性评分(PSM)(四级)

 临床试验原则之一就是均衡,可是受试对象随机分组,只有可能会出现非实验因素在试验组和对照组之间出现失衡的状态,意即基线不可比,那怎么办呢?PSM就是事后进行基线校准的一种方法,你会吗?

(七)知情同意书与医学伦理(五级)

这个大家基本都知道,可是未必完全按照这个做。为防止纠纷与医闹,还是按规定做吧!

(八)你的试验设计对吗(三级)

不同研究目的,有不同的试验设计、不同试验设计计算样本量的公式不一样。设计是试验之始,设计一旦出错,全盘皆输也!

(九)你的试验设计找懂统计的把关了没?

每人都有自己的专业,进行课题设计时重点都放在自己的专业上,可是科研设计包括专业设计与统计设计,统计设计出错,再好的试验结果也是白搭,正如RA.Fisher所说“当你试验完成之后,再去找统计学者求教,无异于尸体解剖,统计学者或许只能告诉你试验失败的原因”


---统计思维与理论系列---

【1076.】这种套路可以学,怎么化无意义为有意义!

【1075.】很有意思的一个统计问题,并发症到底该如何分析?

【1074.】一文了解主流统计软件

【1073.】WHAT!计算机随机序列竟然是伪随机

【1072.】单因素Logistic回归变量筛选,你还在用表表达,看看人家如何可视化的,审稿人看了能不开心吗?

【1071.】SCI论文中回归模型样本量确定标准,建议阅读

【1070.】性别和吸烟是专业公认的危险因素,为啥多因素分析性别没意义了?

【1069.】数值变量应该以何种形式进入模型

【1068.】多项分类变量进入模型的正确姿势

【1067.】这种随意拆分的错误不能犯

【1066.】SCI统计方法写作秘籍

【1065.】这篇SCI论文10个统计问题辨析

【1064.】以前认为概念无所谓,其实松哥错了

【1063.】松哥,我发现一处SCI统计错误,非常荒谬!

【1062.】分类变量哑变量设置后,参照到底如何选择?

【1061.】这篇SCI的诊断试验结果看不懂,他到底是咋比的

【1060.】如何向统计老师咨询统计问题的正确姿势

【1059.】生存分析单因素筛选的困惑

【1058.】4种最常用的统计设计解读

【1057.】SPSS统计软件学习终身不忘之必杀技

【1056.】回归家族的书剑恩仇录,高手进阶必经之路

【1055.】单因素是危险因素,多因素却保护因素了,想逆天吗?

【1054.】这种文章统计套路您一定要学,不管你什么专业通杀

【1053.】这个空白对照到底要不要加?

【1052.】同一肝癌患者,同时接受CT、超声和磁共振,如何分析?

【1051.】来自临床真实问题,有点意思,松哥荐读!

【1050.】知道两组数据的样本量均数标准差,怎么算合并统计量呢?

【1049.】meta分析软件Revman5.3卡死解决方案

【1048.】P>0.05,本身就是没意义还是样本量不够?

【1047.】两因素方差分析,如何判断哪个因素对结果影响较大?

【1046.】带基线数据数值变量如何进行统计分析辨析

【1045.】统计学习之最大困惑!!

【1044.】松哥为啥我318样本量统计分析出来确实400样本量?

【1043.】这两个是啥图?区别和联系

【1042.】变量之间到底是单项转化还是双向转化

【1041.】统计水平自我评估表

【1040.】基线分析的3个终极目的

【1039.】统计小白的学习路径

【1038.】SCI论文中Logistic回归模型“门当户对”原则,松哥心得推荐给您

【1037.】被我们忽视的生存分析区间删失数据

【1036.】Logistic回归文章的SCI审稿人意见解读

【1035.】统计学上的2K效应,你发现了没?

【1034.】正态分布的3个基因密码,聆听大自然心跳的代码!

【1033.】生存分析K-M法与COX回归结论不一致怎么办?

【1032.】异常值的处理只有删除?

【1031.】没有比较就没有伤害,让咱们互相伤害吧,教你4大类统计伤害方法

【1030.】SCI审稿人让我控制2个单因素无意义的变量?

【1029.】量表评价是信度重要还是效度重要?

【1028.】Meta分析要解决的首要任务

【1027.】文章材料与方法中统计方法如何描述

【1026.】这个到底是啥统计设计?一起来看看!

【1025.】聚类分析稳定性判别的经验总结

【1024.】“参数检验与非参数检验”哪个更好?

【1023.】干预前后数据统计分析方法

【1022.】听完四个小故事,你就明白主成分分析是啥意思了!

【1021.】方差分析P>0.05,两两比较LSD法P<0.05,这可咋整?

【1020.】等级与等比,可得分清楚!

【1019.】频率与概率,如胶又似漆!

【1018.】终于发现不用学习,顿悟统计的方法

【1017.】倾向性评分后数据,应该采用配对设计还是成组设计?

【1016.】统计必学的4个核心思想

【1015.】加权最小二乘回归是什么鬼?

【1014.】平行性检验到底应该啥时候做?

【1013】统计的4维空间(一维一层天)

【1012】到底做相关?还是方差分析呢?

【1011】这篇文章凭啥这样分组呢?

【1010】常用统计分析方法选择图解

【1009】P<0.05也别理直气壮,统计也会犯错,还分犯I类和II类错误?

【1008】文章鉴析:这篇文章或许有10处不适!

【1007】R×C卡方的Fisher确切概率法为什么会有卡方值

【1006】大小优指标如何同时制作ROC曲线[经验技巧]

【1005】统计方法与统计思想谁重要?

【1004】别说相关太简单,且听松哥说相关

【1003】正态分布10种鉴别方法汇总【荐藏】

【1002】连续变量变成等级变量后,原来有意义的变量变得没意义了?

【1001】SCI论文中的P for trend是什么鬼?为什么高分文章经常采用呢

------------------------------

精鼎原创,欢迎转发,未经允许,谢绝转载

582d459178869f95d162cb13399b7205.png

8465c2248ba519c482d4a051dc28ae0e.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值