广义线性模型_广义线性回归分析模型Logistic,一文读懂它

本文介绍了Logistic回归与多重线性回归的区别,Logistic回归适用于因变量为分类变量的情况。线性概率模型是Logistic回归的前身,但其预测值可能超出0到1的概率范围。通过logit变换解决了这一问题,形成了Logistic回归模型,属于广义线性回归的一种。Logistic回归在实际应用中,如疾病风险预测等领域,能有效估计事件发生的概率。
摘要由CSDN通过智能技术生成
1992f17bc14f8b76da9134c4f7afd931.png

作者:丁点helper

来源:丁点帮你

前文我们已经讲解了相关与回归的基础知识,并且重点讨论了多重线性回归的应用与诊断分析。今天的文章,我们来看看日常学习和科研中应用同样广泛的另一类回归分析——Logistic回归。

Logisti回归与多重线性回归的区别

多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。

读过我们前面“线性回归”系列文章的同学,肯定已经知道,采用线性回归的第一准则:因变量Y需要是“定量变量”。

例如得分、收入等连续型的,可以计算均数和标准差的变量。而Logistic回归最大的不同在于:Y是分类变量。

Logistic回归的Y是分类变量(这句话希望大家在心里默读三遍)这是进行Logistic回归最基本的条件。

什么是分类变量呢?大家最常见的可能是:发病与不发病。

比如我们用Y来表示“是否患有糖尿病”,用Y=1表示“患病”;用Y=0,表示“不患病”,这里的Y就是一个典型的二分类变量。

此时,当我们希望通过回归分析的方法来探讨“糖尿病患病与

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值