如何将一个向量投影到一个平面上_[深度科普] 度规与时空(上):从二次型的几何直观说起...

c1b89e7b3ed13eebef74fab182626558.png

0) 开篇语

这次我们来科普

一个与时空密切相关的几何概念,

名叫度规(Metric)

它是认识时空几何构造的十六字真言,

是解读狭义相对论中诸多异象的密码,

更是通向广义相对论世界的必经之门。

本文内容较长,将分为上中下三篇。

在上篇中,本文将先用一个

我们喜闻乐见的二维平面上的例子,

来直观理解度规的由来,

以及它与平面和空间几何形貌的定性关系,

然后顺便介绍一些

进入相对论时空之前必备的心法:

协变、逆变、爱因斯坦求和约定

由此为中下篇做好数学上的全部准备。

而在中篇中,我们将进入相对论时空,

给出四维平直时空中的度规,

一览时空的几何构造;

然后用几何的观点,解释几个

狭义相对论中常见的奇异时空现象

并用几何方式推导一遍著名的质能公式,

由此感受一下度规的法力;

而在下篇中,我们会畅游弯曲时空,

用度规打开广义相对论的一条门缝,

感受半个爱因斯坦场方程的奥义,

最后在黑洞的视界里结束全文。

画了这么多饼,我们还是先回到脚下,

从直观可见的二维平面说起。


1) 勾股定理 v.s. 余弦定理

本着“熟人好下手”的原则,

在引入一些抽象概念之前,

我们可以先找几个熟悉的例子聊聊,

先联络联络感情,等酒酣耳热了再动手。

而我们这次要见的第一个老熟人,

是二维平面上的向量长度公式。

假设平面上有一个向量

如果给定一个直角坐标系

以及相应的坐标基底

那么向量

可表示成坐标分量形式:

(
也就是
)

baef6f57edabaa73ca76da3c114f2ec5.png

而我们知道,根据勾股定理

向量长度平方为:

现在我们换个姿势,

把其中一个坐标轴旋转一个角度,

那么我们将得到一个斜角坐标系。

向量

在新坐标系下的分量

将发生变化,记为

其中坐标分量

由下图中的几何关系确定:

8dd046dae3c6ad1d3fbffadb8bc910d2.png

由图中几何关系以及余弦定理可知,

在斜角坐标系下,

向量

的长度平方可以表示为:

(其中

为两个坐标轴的夹角)

这两个式子,就是我们要见的第一拨熟人。

但是,我们好像是要说相对论时空来着,

为啥说来说去又回到中学数学了?

ba63f016b46e847c611384d35c530d82.png

我们做这些当然不是为了消遣,

事实上,我们是要挖掘一个惊天秘密

这两个看似不同的式子,

其实可以看作“同一个几何定理”

在不同坐标系下的表现,

接下来我们就来一步一步揭开。


2) 忆苦思甜:二次型

同学们还记不记得,线性代数课上

曾经有过一个叫做“二次型”的概念?

它是我们要见的第二位熟人,

当年线性代数课本是这样介绍它的:

含有

个变量的二次齐次函数

称为二次型 (Quadratic Form)

它可以写成矩阵相乘的形式:

以方便进行二次型的坐标变换。

线性代数课本还告诉我们,

二次型最初出现的目的,

是为了通过这种坐标变换

将解析几何中的二次曲线化为标准型。

我们慈祥和蔼的数学教材,

似乎比较喜欢从故纸堆里

翻出几个世纪前的古老数学来讲故事,

而且这次举的例子,年代久远不说,

关键是它让我们想起了

中学数学里那些让人痛不欲生的圆锥曲线,

这段回忆实在是不怎么愉快。

3427ef343945d69e59fffae80220149b.png

那么,这个二次型

有没有更好玩一点的例子呢?

有,比如我们要揭开的“惊天秘密”。


3) 统一之路

回顾我们刚才写下的

直角坐标系下的向量长度公式

斜角坐标系下的向量长度公式,

我们会发现它们也是两个二次型,

并且可以写成矩阵相乘的形式:

直角坐标系下

其中

,也就是单位矩阵

斜角坐标系下

其中

而线性代数课本在讲二次型的时候,

顺手给出过一个二次型的坐标变换法则。

它是这样定义的:

设两个坐标系

之间

有坐标变换关系:

对于平面上的某个二次曲线,

它在不同坐标系中的曲线方程显然不同。

假设它在标系

中的曲线方程

可以表示为二次型

在坐标系

中的曲线方程

可以表示为二次型

那么两个二次型矩阵

之间

满足变换关系:

这个变换的几何意义就是:

同一条二次曲线,

在两个不同的坐标系之间有不同的方程,

这两个方程之间可以通过

来相互转换。

现在回到向量长度公式。

受到二次曲线方程变换的启发,

我们也不妨做出这样一个猜测:

如果直角坐标系下的向量长度公式

和斜角坐标系下的向量长度公式之间

也满足二次型变换,

那么它们可能也是“同一个几何定理”

在不同坐标系下的表现

也就应证了我们所说的“惊天大秘密”。

它们之间是否真的满足二次型变换关系呢?

我们马上动手算一算。

根据二次型变换的定义,

我们第一步要做的,

是先找出直角坐标系和斜角坐标系

之间的坐标变换关系。

为了找到这种关系,

我们将两个坐标系放到一起观察:

ceb6d8c5991a4f3e882dfb19e4adb1f0.png

通过图中几何关系可以看出,

向量

在两个坐标系中的分量

满足变换关系:

写成矩阵形式即为:

于是我们得到了

直角坐标系和斜角坐标系之间的

坐标变换矩阵:

为了求得相应的二次型变换,

我们顺手求出

的逆矩阵:

接下来,我们就可以用二次型变换

来验证前面对于“惊天大秘密”的猜测了。

作为备忘,

我们将两个坐标系下的长度公式再写一遍,

直角坐标系下:

斜角坐标系下:

如果我们能证明

之间满足变换关系

那么也就在某种意义上

验证了那个惊天大秘密。

这个计算虽然很简单,

但还是请同学们准备好纸笔,

随老夫一起算一算,亲手见证奇迹:

一字不差,

正好等于

也就是说,平面上的向量长度公式

在不同坐标系中表现出的不同形式

本质上还是同一个定理!

a730fbb3ba1a69dae593845141028adf.png

是不是很神奇?

(为了配合剧情需要,请回答“是”)

其实只要是在平面上

无论我们取怎样奇怪的坐标系,

得到怎样奇怪的向量长度公式,

它们在本质上都是同一个几何定理。

而这个几何定理的背后,

对应着平面最基本的几何特征。

有了它,我们就能区分平面和曲面,

区分更高维的平直空间和弯曲空间,

甚至可以定量描述弯曲空间的形貌,

从而打开广义相对论的大门。

它就是本文的主角:度规


4) 度规:主角登台

我们来把前面一些信息整理成表格:

b3bfcc5076719a8e8d35bea3efc050ca.png

我们看到,同一个向量

在两个坐标系中分别表现为

同一个几何定理

也分别表现为

照这个逻辑,我们可以猜测,

这里出现的两个二次型矩阵

也是某个“看不见的量”

(我们将它记作小写粗体字母

)

投影在两个坐标系中的坐标分量。

只不过向量的分量是行矩阵或列矩阵,

而“看不见的客人”

先生留下的投影

是一个

的方阵而已。

00bbeddf3ce18e86f897f4bad5654306.png

同样,

本身也不随坐标系改变

但是它的投影在不同坐标系之间

会按照一定规律发生变化,

这个规律,就是二次型的变换关系

说到这里,各位应该已经猜到了:

这位“看不见的客人”

先生,

就是我们本文的主角:度规

它在直角坐标系下的“投影”

就是矩阵

而在斜角坐标系下的“投影”

就是矩阵

并且它在任意两个坐标系之间

都满足变换关系

(可能有同学已经看出来了,

这个度规的性质看起来像一个张量,

更准确说,是一个

型的张量,

但不知道什么是张量也不影响阅读,

所以这一点我们以后再细说)

现在再来过一遍这个度规的性质:

它是一个抽象的量,

无法像向量一样表示成明确的几何图形,

我们只能通过它在不同坐标系下的分量

来对它进行定量计算。

虽然它的分量会因坐标系的不同而改变,

但它本身是一个不依赖于坐标系的量,

而仅仅与它所在空间的几何特质有关。

有了这个特点,它就可以

帮助我们区分平直空间和弯曲空间了,

现在我们就来体会一下。


5) 平面为什么是平面

我们还是以平面为例。

我们先在平面上沿两个方向

画出一族平行线,如下图:

7fd03870ae1efb87a0f525839ef7e3f7.png

如果将这些平行线看作坐标轴,

那么我们可以在平面上任意点

建立一个局部坐标系,

并且定义基底

,如下图:

12c2258e77fa57547c6ed9fd3d5ea91a.png

显然,在这族平行线坐标系中,

每个局部坐标系的基底都是一样的。

这就意味着,

一个向量出现在平面上任意位置时,

它的分量都是同一个列向量,

相应地,它在任意位置的长度公式

也是同一个形式:

也就是说,在这族平行线决定的坐标系下,

度规的分量处处相等,与位置无关,即:

这看起来似乎理所当然,

但这种理所当然其实只对平面成立,

换句话说,只有在平面上,

我们才能找到这样一个坐标系,

使得度规的分量形式处处相等。

而微分几何学家告诉我们,

在曲面上,这一点不再成立。

一个简单的例子是球面。

如果我们指定了球面上的经线和纬线,

f26b0578a052839fc56223fb77709bcd.png

那么这些经纬线就可以构成一个坐标系,

各点坐标值就分别是经度

和纬度

61e5827f9f79fcc8b8ec8abb8c6865f4.png

根据微分几何的结论,

在这样的坐标系下,

每个点上的局部基底将不再相同,

于是相应地,

向量在球面上各点的长度公式将各不相同,

也就意味着度规分量会随位置变化,

根据计算结果,

这种坐标系下的度规分量与纬度有关,

为:

(其中

是球面的半径)

(这个度规的计算其实可以不用微分几何,

最简单的高数知识就能算出来,

我们只需要用球面上的弧长微元公式

代替向量长度公式,就能得到这个 度规。

各位可以试着推一下,这个公式是:

)

虽然我们只考察了

经纬度这一种球面坐标系,

但实际上无论我们怎么取坐标系,

都无法使球面上度规的分量处处相等。

这个结论的推导,

需要用到更多微分几何知识,此处从略,

我们就当它是钦定的就行了。

实际上,在广义相对论中,

描述时空弯曲的曲率

就是用度规的分量随位置的变化来计算的,

老夫会在下篇中做一个简单说明。

至此,我们通过二维平面上的例子,

对这个决定空间几何性质的看不见的客人

有了一个大致的认识。

而在中篇中,我们将进入四维时空,

去看看如何利用度规

为相对论中那些奇异的物理现象

给出更自然、更具有几何味道的解释,

最后在下篇中用它偷窥半部广义相对论。

但进入中篇和下篇之前,

我们还要来解决一个“美学”问题,

并顺便勾搭一对新朋友。


5) 协变与逆变

刚才我们通过二次型变换知道:

直角坐标系下的向量长度公式

和斜角坐标系下的向量长度公式,

是同一个几何定理的不同形式。

但它们看起来毕竟还是完全不一样,

很难让人相信

它们真的是同一个公式幻化而来。

特别是斜角坐标系下的公式中,

那一项,怎么看都觉得碍眼,

这让我们这些强迫症情何以堪。

65663c7634d494006e845996af4fd9bb.png

如果能找到一种更优雅的形式,

让向量长度公式在所有坐标系下

都统一穿上同一种制服,

那看起来一定会很赏心悦目。

86248895c26a6fdafe576341968cd90e.png

但是,这样的形式真的存在吗?

你别说,天底下还真有这种好事。

接下来,我们要来认识一对姐妹花,

让她们穿上制服表演点新节目。

(请在本文讨论的范围内理解这句话)

我们还是回到某个斜角坐标系下:

83682ef5b89bdf74a1a23b857499235a.png

我们将这个斜角坐标系的

坐标轴

、基向量

全部标成蓝色,

并且将向量

在其中的分量

用一种新的方法来表示:

也就是将下标换为上标,

(请注意,是上标,不是指数)

我们将这些分量称为逆变分量

接下来,我们要为她找到

一个失散多年的孪生姐妹:

9e2f44c3cbc5fec88678f50eb377ee5e.png

如上图所示,

我们在已有的斜角坐标系基础上,

先画一条垂直于

的新坐标轴,

将它标为红色,并命名为

同样,另画一条垂直于

的坐标轴,

也标为红色,并命名为

(随时提醒:

是上标,不是指数)

接下来,按照图中的几何关系,

上分别定义

两个新的基底

,也标为红色,

(随时提醒:

是上标,不是指数)

并将

上的投影长度

比值分别记为:

这样,我们就定义了一组新的分量:

我们将它们称为协变分量

不过,同学们不用花时间理解

上面这一套眼花缭乱的操作,

我们有另一种虽然不太严谨、

但很好用的方式来计算协变分量:

5c0b9e7d8e715c2afdb856cf54ca83da.png

从向量的顶点出发,

对原来的坐标轴

分别做垂线,

由垂线定义的投影长度

与原来的基底

长度的比值

为协变分量

再次提醒,这不是协变分量的严格定义

但从计算结果来说是等价的,

并且它能使我们后面的计算更省事儿。

接下来,请同学们做一个简单计算:

让逆变分量与协变分量分别相乘后求和,

即:

(随时提醒:

是上标,不是指数)

看看能得到什么结果。

(此处预留一炷香计算时间)

算出来了吗?

没算出来的同学,来跟着老夫过一遍:

f9660c74501570f55b78acaa3f5daf0e.png

根据图中的几何关系可知:

代入

中,我们得到:

(提醒:为区别上标和指数,

今后所有平方运算都加上括号,

比如

表示一个逆变分量

表示
的平方,请注意区分)

现在发现这个式子等于什么了吗?

它就是斜角坐标系下

以逆变分量表示的向量长度平方公式,

于是我们得到:

bb996c4e91a19926c184b081379c7d80.png

那它在直角坐标系下是否也成立呢?

我们其实都不用动手画图,

闭着眼睛就能想象到,

在直角坐标系这种特殊坐标系中,

向量的协变分量和逆变分量一定相等。

这样我们也可以把长度公式改造为:

(随时提醒:请注意区分上标和平方)

所以,通过协变和逆变这对姐妹花,

我们终于找到了那个所有坐标系下

都具有相同形式的向量长度公式:

这个式子其实对于

任意维度空间中任意直线坐标系都成立,

(对极坐标之类的曲线坐标系也成立,

只不过我们要重新定义局部坐标而已)

我们可以统一写成:

(其中

为空间的维度)

从此以后,我们在计算各种长度时,

可以告别勾股定理和余弦定理,

只需要这么一个简洁紧凑、

让人赏心悦目的式子就够了。

实际上,在证明过程中,

我们还能发现另外一个等式关系:

也就是说,协变分量就是

度规分量矩阵与逆变分量相乘的结果。

我们也可以将它写成更一般的形式:

其中

为度规矩阵

(注意:这是向量在同一个坐标系下的

协变分量和逆变分量之间的转换关系,

而不是不同坐标系之间的分量变换关系,

虽然它们看起来彼此有点像,

但几何意义是完全不同的)

这个等式能给我们带来一个好处,

就是不用再去画图分析几何关系,

只要知道逆变分量和度规,

就可以找出相应的协变分量了。

实际上,在中篇中我们将会看到,

在相对论的四维时空中,

向量的协变分量和逆变分量之间,

其实并不存在一个

可以用图形解释的直观几何关系,

但我们仍然可以通过找出四维时空的度规

来明确它们之间的关系。

写到这里,关于协变和逆变

这对姐妹花的故事,就说得差不多了。

当然,有同学可能会比较困惑,

“协变”和“逆变”

这两个奇怪的名字是怎么来的。

简单地说,这和它们

在不同坐标系之间的变换规则相关:

协变分量的变换矩阵

和基向量

的变换矩阵一致,

逆变分量的变换矩阵

和基向量

的变换矩阵互为逆矩阵。

虽然这种变换规则

在相对论的各类计算中至关重要,

但在这篇科普文中并不是重点,

待以后我们需要时再详细补充。

现在,我们要进入本文最后一部分,

去见识一种新的符号体系,

这是阅读相对论教材必须学会、

并且看起来也璧格满满的符号体系,

叫做“爱因斯坦求和约定”,

相信同学们一定会喜欢。


6) 爱因斯坦求和约定

我们先来回顾几个式子。

第一个是刚刚得到的

适用于所有坐标系的向量长度公式:

(注意:协变和逆变的关系

并不是行向量和列向量的关系,

上面那个式子,

同样可以写成

而不影响计算结果)

第二个是协变分量与逆变分量的转换公式:

我们其实可以将它写成求和形式:

第三个是向量长度公式的二次型:

我们也可以把它写成求和形式:

在这些式子中,我们可以发现一个规律:

凡是需要求和的符号,

都会在上标和下标中各出现一次。

比如最典型的是

其中的

正好在求和项的

上标(

)和下标(
)中各出现一次,

于是这个式子就对

求了一次和,

则只出现了一次,因此对
不求和。

实际上,张量的运算规则已经决定了:

(咦?我们又说到了张量?)

同一个符号在上下标中最多各出现一次

并且上下标同时出现的符号必然会求和

而只出现一次的符号必然不求和

有了这个规律,我们会发现,

求和符号已经变成了可有可无的存在。

所以,真正的相对论票友,

就算没有写出求和号

也能辨别出哪些符号会被求和,哪些不会。

而爱因斯坦大神发现这个好用的性质后,

提出了一个不成熟的小建议:

对张量分析中的公式,直接省略求和符号

从此也为印刷事业节约了不少油墨。

cfca02496c18b9ef3f302a3099393575.png

为了纪念爱因斯坦的这个贡献,

我们将它称作爱因斯坦求和约定

在这个约定下,

我们可以将刚才几个公式重写一遍:

在本文的中篇和下篇中,

我们就要开始断奶,慢慢告别矩阵运算,

正式采用这种简洁美观的符号体系了,

虽然它真正计算起来

其实并不像看起来那么容易,

但它比矩阵运算功能更加强大,

能表示很多矩阵运算不能表示的公式,

以后我们会慢慢体会这一点。

总之,学会这种符号表示体系之后,

咱也算是能看懂相对论的文化人了。


7) 结束语

为了在这个上篇里完成

理解相对论时空的必要铺垫,

这篇文章给出的信息量其实比较大。

虽然老夫尽量在尝试

以一种连贯的叙事方式理清思路,

但在文章的最后,

我们还是有必要来梳理一下脉络:

首先,我们通过回顾

线性代数中的二次型二次型变换

发现平面上勾股定理和余弦定理,

其实可以看做同一个几何定理

在直角坐标系和斜角坐标系中的不同表现,

并以此抽离出了度规的概念,

然后通过对比平面和球面,

体会了度规对于描述空间几何形貌的作用。

接着,我们话锋一转,回头讨论

如何将勾股定理和余弦定理改写成

一个适用于所有坐标系的整齐形式,

我们最终找到了这个式子,

并在这个过程中认(gou)识(da)了

协变分量逆变分量这对姐妹花。

而为了让求和的式子显得更简短紧凑,

我们顺手见识了爱神的杰作:

爱因斯坦求和约定

到此为止,我们集齐了

理解相对论时空所必要的所有龙珠,

(不到七个,但这不是重点)

可以准备好召唤神龙、

然后乘龙畅游四维时空了。

9818c7d6668ffc4eaa2c47edcf5e80cd.png

不过,鉴于我们在本文中

多次见到“张量”这个神秘物种,

在中下篇还会更频繁地与它亲密接触,

老夫建议各位先熟悉一下什么是张量。

作为一个宅心仁厚的中年大叔,

老夫为同学们准备了一篇张量的科普文,

各位可以抽空看看:

(这广告居然做得如此理直气壮冠冕堂皇)

PeiLingX:[深度科普] 张量:理解相对论的必备语言 (上)​zhuanlan.zhihu.com
d73bee5b574ac062176fe08e1e4d79d7.png
PeiLingX:[深度科普] 张量:理解相对论的必备语言 (下)​zhuanlan.zhihu.com
a3da475cc72a2b4ef75f51c34d775ebd.png

好了,我们中篇见:

PeiLingX:[深度科普] 度规与时空(中):几何视角下的平直时空​zhuanlan.zhihu.com
dcb3c799d3af042fc9d3d4f369b55dbd.png

文末补充:问题探讨

评论区提出的问题放到这里探讨:

  1. 来自 @爱提问的马里奥 的问题

1)

对吗?

2) 还有个问题一直没搞懂:

是什么意思?

都是
的函数,这一点很困惑,

这个

画在图上该怎么画,

为什么
是的函数,
是标量啊

和矢量
的关系是什么?

我的理解

1)

是对的

它的几何意义放到后面再说

2)

就是一个参数方程

在微分几何中,

是曲线的参数,

就是曲线在某点上的切向量,

举个例子:

假设直角坐标系下有曲线方程:

我们可以看出它就是平面上的圆

a8c76e2bdc809791e9bfa67d539184ab.png

并且,如果将参数

看做时间,

那么这个曲线方程就描述了一个圆周运动

可以看做是这个圆周运动的线速度矢量,

表示时间微元,只不过不能画出来。

而在这个例子中,

的几何意义

就是时间微元

内运动的距离微元。

比如在直角坐标系下:

度规

于是

如果取为极坐标

切向量

度规

此时

依然成立。


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值